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NOTATION

By | kzl 035 = fea!

v 1

B3 3 kz 05 k (5% -y )

B, . ~ biaxial stress ratio o, /o,

i] |
Ey11,E20 orthotropic elastic moduli of the lamina measured in the

fiber and trangverse directions, respectively
Fi' Fij’ Fijk strepgth tensors
1 1 1 1 1 1 .
Fi, Fa, Fg X X'y gvrg T gy respectively

: ] 1 1 :
Fi1, ‘F22r Fse YT yy' f Ggv ¢ respectively

Fip - , quadratic interaction strength parameter

Fiizs F122 cubic interaction strength parameters

Fieer F256 '

G, orthotropic elastic shear modulus

ksi 1000 1bs/in2

L tube length

N N normal forces per unit length measured in the x and Y
Y directions, respectively

ny in-plane shear force per wnit length

P internal pressure

iv



011/Q22
12 = Q1

Q66

1]

- 5,587

X,X'

Y,y'

Y€

V1z,V21

Ell/(l—\llzvzl) ’ Ezz/(l"\)]é‘)zl) respectii}ely

v31E11/ (1=v12v21)

Gi2

see Eq. (20)

tube radius measured to median surface

positive and negative lamina shear failure stresses,
respectively

lamina thickness

torgue

uniaxial lamina strength in fiber dlrectlon, tensile
and canpressive, respectively

uniaxial lamina strength transverse to fibers, tensile
and cumpre551ve respectively

(1-v32v57)
shear and normal ‘strain, respectively

fiber orientation relative to structural axis. (see Fig

major and minor orthotropic Poisson ratios, respectively

stress

shear’ stress

. 3)



i, 3,k

SUBSCRIPTS
integers, 1, 2, 6
structural axes, axial and circumferential, respectively

principal lamina axes éorresponding to the fiber and
transverse directions, respectively

in-plane shear.
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1. INTRODUCTION

One of the major difficulties associated with the
design and use of composite materials for loadébearing struc-
 tural applications is the current lack of a suitable failure
criterion for both the individual laminae and the laminated
_struéture as a whole. Although many lamina failure criteria
have been proposed (see Refs. 1, 2 and 3, for examplef, in-

- sufficient experimental data particularly under combined
states of stress have been accumulated to .indicate which cri-
terion is best able to predict the failure stresseé.‘ The
difficulty is of course that each strength criterion has been
developed empirically with certain intéraction parameters
being neglected and they are all phenomenolcogical in nature.
In other words, they can predict the occurrence of failure
but they do not describe fhe physics or mode of failure.

It would appear that the most geﬂeral failure cfi—
terion proposed up to the présént is that given by Wu (Refs.
4, 5, 6) in the form of a tensor polynomial
\Ti O”j Gy

f(G’i) = Fi G’i + Fij‘ (J'i U‘j + Fijk

+ ... =1 (1}

(where i, 3, k =1, 2, 3, ...6}

which can be shown to encompass all other failure criteria
which are currently available. The simples! form of Eq. (1)
" which retains the interaétion tensor strength components is
(Refs. 7, 8) |

FiU“i-{—Fij (Ti(Tj=l - (2)



This quadratic tensor polynomial defines a failure surface
in stress space in terms of two strength tensors Fi and Fij
of the second and fourth ranks, respectively. Of particular
interest in this formulation is the existence of the linear

—
%

terms in di which can account for the observed differences
between positive and negaﬁive stress induced failures. How-
ever, in orxder to employ the stress tensor polynomial strength
equation, one is faced with the difficulty of evaluating not
only the standard principal strength parameters as defined
by the (Fi, Fii} relations, but also determining the inter-
action terms (Fij' Fijk’ etc.) which are regarded as inde-
pendent material properties. Since the failure surface may
not be ellipsoidal in shape (i.e., the principal directions
of strength may not always be orthogonal), it is necessary
to includé higher order terms in the tensor polynomial equa-
tion (such as the sixth-order failure tensor Fijk)' Thus the
number of independent strength parameters that have to be de-
termined experimentally can become inordinately large. It
rmight be noted that a compromise "hybrid" method has ,been re-
cently proposed (Ref. 6) in which fewer experimentally mea-
sured interaction parameters are required. One other formu-
lation thaf has also been published recently {(Ref. 9) is based
on strain energy and matching the shape of the failure surface
to experimental data. However, only the three principal

i .
streﬁéth parameters are utilized and no interaction terms are

included.



Most of the experimental studies that have been under-
taken with composite materials have employed flat plate speci-
ments, particularly for evaluating the orthotrd?ic stiffness
and principal strength parameters. For example, two reports
by Azzi and Tsae (Refs. 10, 11) have demonstrated remarkably
well how the plane stress anisotrople Hill failure condition
was able to predict the strength for transversely isotropic
configurations, including unidirectional off-axis, cross and’
angle (+@) ply laminates. 1In this failure criterion, only
the primary strength parameters were used, with no allowance
for compression/tension differences. Since theory and experi-
ment were in good agreement, one must conclude that for the
specimens tested, the interaction terms must either have
been reasonably well approximated or their influence on the
strength prediction was of second order. However, in general
this may not be the case for all materials and load config-
urations. In particular, for the flat off-axis test speci-
men, Pipes and Cole (Ref. 12) recently showed very well that
the Fi, term did not contribute significantly to the tensile
strength prediction as a function of fiber orientation (@).
Moreover, it was proven that this spécific test cenfiguration
was not sufficiently sensitive to accurately measure F12'
Other difficulties associated with flat plate specimens include:
- specimen geometry can affect the measured strength - thus

it is necessary to use samples having very high (free length/

width) ratios (Ref. 13);



- existence of free edges canllead'to large ipterlaminar
shear strains and premature cracking of matrix (Ref. 14):

- effect of end constraints and coupled deformations can
_lead t0O erroneocus results;

- obtaining a homogeneous stress state requires a sufficiently
wide specimen, but this makes it difficult to overcome the
first problem,

Consequently, a great deal of theoretical and experi-
mental work has been devoted to assessing the circular cyl-
indrical tube as an optimum specimen configuration for both
stiffness and strength characterization. However, consider-
ablé care must also be exercised in the proper design of the
cylinder to ensure absence of edge constraint effects, fail-
ure in the test section and a uniform stress field. 1In gen-
eral,‘to‘émploy "thin wall" shell theory for calculating
stress levels regquires that the (diameter/thickness) ratio
should be > 20 (Refs. 15, 16) and the specimen iength should
equal twice the mean diameter plus the desired gauge length
(Ref., 15). The limits on {diameter/thickness) however are
dependent on the material system and ply orientations. It
was shown, for example, that it was difficult to achieve a
uniform stress distribution in a helical unidirectional wound
tube and thus one should use T @ symmetric configurations
for characterization tests. Perhaps the most difficult para-
meter to assess experimentally is the degree of end attach-

ment needed to obtain a relatively uniform stress distribution



in the gauge section without failure cccurring at the ends
(Refs. 17, 18). For a good review of current static test-
ing techniques, one can refer to Bert's paper (Ref. 19).

At this point, it ié worthwhile reviewing the extent
to which tubular specimens have been utilized to evaluate
strength criteria. Aside from the ﬁreliminary burst press-
ure results published by Sandhu et al (Ref. 20}, the first

measurements of an interaction component ( )} were made by

F12
Wu (Ref. 8). More details on the actual test programme can
also be found in Ref. 21. Later, when Wu expanded his fail-
ure Cri?erion to include higher order terms (Fijk), he also
reported additional data (Ref. 6) in the form of a failure
surface for direct cémparison with'various failure theories.
‘These results were also given in Ref. 5 in which it was shown
ﬁhat the ;ensor failure polynomial provided the bést compari-
 son. However, the scaﬁter was substantial and the configura-
tions tested were guite restfictive, i.e., specially ortho-
tropic and symmetric. One noteworthy investigation involved
the-testing of ile cylinders under axial tension, torsion'and
internal pressure (Ref. 22)}. The failure criterion adopted
consisted of evaluating the in-plane stresses and determining
when their fracture stress levels had been reached (based on
four fracture sﬁress parameters - tensile and compressive

stresses for fibers, tensile stress normal to fibers and

shear stress). An empirical expression was used to calculate



the ultimate shear stress as a function of orientation with
respect to the fibers. Furthermore, it was.assumed that the
matrix failed first and the stresses could be re-calculated
based on an assumed zero modulus for the matrix. With this
approach, good agreement between experiment and predicted
behaﬁiour was achieved. Whether or not this méthod would
yield similar results for other laminates is not known. Fin-
ally, one last report which was recently published (Ref. 23)
contains experimental data on tubes subjected to uniaxial
loading, internal pressure and torsion. Some conparisons
with failure theories were presented but no attempt to eval-
uate thé tensor strength polynomial terms or its strength pre-
dictions was made.

.The following report describes the experimental mea-
suremeﬁfs and techniques used to obtain the strength tensor
components, including cubic terms. Based on a considerable
number of biaxial pressure tests together with specimens sub-
jected to a constant torgue and internallpressure, a modi-
fied form of the plane streés tensor polynomial failure egua-
tion was obtained that was capable of predicting ultimate
strength résults reasonably well. Although only glass-epoxy
tubular test configurations have been studied, it is felt
that the failure criterion should apply equally well to other
material laminates. In addition, preliminary data were ob-
tained to determine the effect of varying post cure times

and ambient temperature (- 80°F to 250°F) on the change in



two tensor sfrength terms, F2 and F22' ‘Other_laminate con-
figurations presumably should yield corresponding variations

for the remaining strength parameters.



2. FABRICATION OF SPECIMENS

2.1 Belt Wrapper.

The belt wrapper, as shown in Figure 1, is an appafatus
" which applies constant pressure around approximately 340° of
a mandrel through the use of a silicone coated fibreglass ‘
belt under tension. The mandrel is positioned on the loose-
éilicone/fibreglass belt between two rollers. One of these
rollers can be moved forward in a groove and tightened down
so that there is a gap of about 1.5 inches between the two
rollers (Figure 2). One of the lower rollers is mounted at
both ends on air cylinders and these cylinders are connected
through a pressure regulator to an air supply. When the air
cylinders are pressurized, the lower roller is pushed for-
ward so that tension is applied to the belt. This causes

the mandrel to be pressed up against the two upper rollers
and the belt applies pressure around the mandrel. There is
a reversible, variable speed motor connected to one of the
lower rollers. When the motor is engaged, ﬁhe roller rotates
causing the belt to move, which, in turn, causes the mandrel
to rotate. In this way, the prepreg tape can be wrapped

tightly onto the mandrel.

The mandrels can be made from either steel or aluminum
tubing of the desired outside diameter. The tube must be-
‘cut to a length of 46 inches so that it will fit in this
particular belt wrapping apparatus and then, its surface must

be ground to ensure a uniform circular cross-section along



the entire length and be very smooﬁh, The tube is

theﬁ fitted with a Vacuumrconnection at one end. Now, the
finished mandrel is thoroughly cleaned to remove all traces
of dirt and oil from its surface and an even continuous film
of Frekote 33 Releasing Interface is sprayed on. This film
is then baked on at 125°C for about 15 minutes to increase

its durability as suggested by the manufacturer.

2.2 Geometry of Pre-Preg Sheets for Wrapping

In order to-wrap a particular fibre angle on the mandrél
and to avoid overlapping or gaps at the seams of the material,
the pre-impregnated (pré—preg) tape must be cut very accu-
rately to the desired width. The following procedure is used
to deter@ine the length and width of the tape required to

fabricate a specimen having any fibre angle, @ .

Figure 3 shows the dimensions of the finished specimen
and of the tape reguired to.maké that specimen. In:this
figure, D is the outside diameter of the mandrel; L is the
required lengﬁh df the test specimen, C is the outside cir-
cumference of the mandrel, W is the width of the pre-preg
tape, 1 is the length of the pre-preg tape and &@is the fibre
angle. The dimensions of the pre-preg tape are calculated

using the following relations:
C=wD, W=D sin.§ , and 1 =L / cos o

where §== 90 - & degrees. When performing these calculations
for additional laminae other than the firét, the value of D

must be increased by twice the thickness of the pre-preg

LY
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tape each time. .

2.3 Wrapping Procedure

The material used to make all of the test specimens was
"Scotchply" Reinforced Plastic Type 1002 fibreglass/epoxy

preimpregnated tape.

The feed guides on the belt wrappér are adjusted to
produce butt seams using a paper pattern of the desired ori-
entation. The first ply of pre~preg is then placed on the
working table of the belt wrapper with the paper backing
against the belt. The circumferential edge of the tape is
positioned against the feed guide and the material is slowly
rolled onto the mandrel in such a way that the paper backing
faces_putwardé. If the tape has been cut correctly and the
guldes adjusted carefully, there should be no overlaps or gaps
in the tube, but rather a smoothly butted seam. The paper is
then peeled away from this first ply by running the belt
wrapper backwards and carefully 1ifting the paper from the
tape. Additional laminae are wrapped in the same manner.

With thick-walled structures, the air cylinder pressure should
be reduced as succeszive layers are wrapped to avoid 5uckling

the material.

Once all of the plies are wrapped onto the mandrel, a
porous teflon coated fibreglass cloth is wrapped around the
tube again using the belt wrépper to ensure a wrinkle-free
application. The specimen is then removed from the belt- .

wrapper and bagged in Vac-Pak type E3760 film and sealed
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with a vacuuﬁ bag sealant. Canvas strips are_placed along
the bag seam and around the ends of the mandrel, inside the
vacuum bag, to allow a vacuum over the entire*tubé (Figure L)
Using a vacuum pump, a vacuum of 29 inches of Hg is es-
tablished and maintaiﬁed in the bag around the specimen for
three hours while the tube‘is curing at 150°C. The bag and
release cloth are removed from the tube after four hours and
the specimen is postcured for seventeen hours at 150°C. The
oven temperature is then raised to 200°C for forty-five
minutes. After this, the tube is removed from the oven and

- slid off the mahdrél.

The tubes are cut to the desired length by sliding them
over a cutting_manarel mounted on a lathe (Figure 5). Using
a slow lathe speed, the tube is turned and an air operated
abrasive cutting disc, mounted in the tool post, is used to
make a square cut. The tubéiends are sanded smooth and thick-
ness measurements are-taken at eight positions equally spaced
around the circumference at both ends and in the middle
section in order to obtain an average tube wall thickneés.
The specimens are then readied for testing by reinforcing
the ends with stepped down layers of cotton cloth, fine fibre-
glass cloth and epoxy and potting them in end plates, made
6f a suitable material, to a dépth.of one inch with a room
temperature curing epoxy. Several specimens were strain
gauged with 350 ohm, 0.5 inch foil gauges to provide stress-

strain data up to failure.
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2.4 Specimen Design

Thin-walled cylindrical test specimens offer definite
advantages for experimentally characterizing thé mechanical
behaviour of fibre/matrix composite materials. All of the
loadings required to fully characterize the composite system
with respect to its mechanical properties can be applied to
this type of specimeﬁ. However, ﬁarticular care must be taken
to ensure that reasonably uniform stresses across the wall
thickness are obtainedf As noted earlier, the stresses in-
duced in an anisotropic tube which is subjected to combined
axial load, torsion, and internal pressure are approximately
uniform across. the wall thickness provided that the ratio of
wall thickness to radius is sufficiently small.

Aﬁmajor problem remains in the use of tubular test
specimens which are usually rigidly clamped (i.e., potted)
to end plates. This method of end attachment prohibits the
transverse and radiél displacements of the tubular specimen
and this induces relativély large bending stresses in the
region near the end plates. These bending stresses can lead
to premature failure of the tube in the end regions.

If thé magnitude of these bending stresses can be pre-
dicted before any testing is done, then sufficient reinforce-
ment can be applied to the ends of the tube in order that
they do not fail prematurely. Also, if the variations in the
induced stresses along the length of the test specimen are

known, then it can be designed more accurately so as to
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ensure a uniform stress distribution in the test section.

s

In Appendix A, the governing equations for ortho—

06 = Bij = 0} undexr symm-

etric loading are derived using an extension of Flugge's

tropic symmetric laminates (Al6 = A

‘shell theory (Ref. 24) provided by Cheng and Ho (Ref. 25).
These equations were then solved to determine the proper-dim—
ensions of the tubular test specimens used for composite

characterization.
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3. EVALUATION OF STRENGTH TENSORS

The general form of the tensor polynomial strength
equation proposed by Wua (Ref. 4) is

i Ty G“j q’k + ... =1 {3)

where i, 3, Kk = 1, 2, ... 6, and Fi’ F.., Fijk are tensors

i3
of the 2nd, 4th and 6th ranks, respectively. For a plane
stress state, i, j, Xk = 1, 2, 6. The purpose of this section
of the report is to provide a description of the experimen-
tal methods used to evaluate the principal strength compon-

ents {Fl, F2, F6; Fll' F22, F66) apd the guadratic interac-

tion parameters (F F and F,.}, assuming the material

12" “16 26

system is symmetric (i.e., Fij = Fji for i # j3). In this

formulation, each of the tensor strength terms (Fi, '

F..
A ‘ 1]
Fijk' etc.) is considered to be an independent material pro-
perty. Although experimental results have only been obtained
for the linear and gquadratic terms, analysis in Section 6 was

used to estimate the required cubic terms (Fijk) necessary

for the strength equation.

3.1 Principal Strength Tensor Components (Fj, Fjiji)

From the analysis by Wu (Ref. 8), it was shown that
the principal:strength-tensorlcomponents (Fi and Fii) can he
readily calculated from the experimentally determined values
of the uniaxial tensile and compressive failure stresses in
the fiber direction (X and X]), perpendicular to the fibers

t . . .
(Y and Y )and from positive and negative pure shear failure
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stresses (S and S', respectively). The appropriate relations

are given by:

=1_1 1 _ 1

FLEx-% Fro=5% - ¥ ;
11 1

Fe =5~ g Fl11 = s (4)
1 |

F22™ v - Fes = 53¢

where the Fiii terms are not considered since they were‘shown
in Ref. 6 to be redundant and not necessary for the strength
criterion. |

To. determine the tensile strength in the fibre direc~
tion, four tubes were tested. These tubes zll had an inside
diameter of approximately 2‘inéhesland were 8 inches long be-
tween end-plates. They were fabricated from two plies of
material with the fibers aligned along the longitudinal axis
of the tube, (i.e., © = 0). Figures 6 to 8 show the tesf
set~up used and a specimen before, during and after failure.
The results are summarized in Table I. A typical stress-
strain curve, obtained using a strain gauge oriented‘longi—
tudinally at the midpoint of the specimen, is shown in Figure
9.

For the compressive strength in the fiber direction,
seven tubes were tested. It was necessary to fabricate these
tubes with a smaller inside diameter (approximately one inch}
and a larger wall thickness in order to avoid buckling. They

were made from eight plieg of material and the fibers were
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also aligned in the longitudinal directibn. The test set-
up and a faiied specimen are pictured in Figures 10 and 11,
Figure 9 also shows a stress—stréin curve for one of the
tubes.

Seven unidirectional, four ply, laminated tubes with
€ = 90° were tested ih tension to determine the value of the
ultimate transverse tensile strength. These tubes had an
inside diameter of about 2 inches and were 5 inches long be-
tween end-plates. They were wrapped from a single piece of
the pre-preg tape in order to provide continuous fibres in
the circumferential direction. This resulted in two seams
opposite each other on the inside and the 6utside walls of
the tube. Although a slight discontinuity occurs at the seam,
it does not affect the determination of the transverse
strenggh at all. ‘A tube is shown in the test set-up, after
tensile failure, in Figure 12. The tensile strength results
are contained in Table I and Pigure 14 shows the stress-
strain behaviour of one of the test specimens.

The compressive stréngth of the material transverse
to the fiber direction, was determined by applying axial com-
pression to failure on seven'specimens, similar to those used
in the transverse tension tesfs. Figure 13 shows a typical
failure of one of the tubes. These résults are also summar-
ized ;n Table I and Figure 14 shows a stress-strain curve

for this type of loading.

-
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Seven tubes were tested to failure under pure tor-
sional loading to obtain the ultimate shear strength of the
material., As expected, the direction of the torgue did not
significantly change the failure stress. The tubes were
four-ply laminates with & = 900, fabricated in the same way
as those that were used in the tests for the transverse ten-
sile and compressive strengths. Strain gauges were applied
at 8 =+ 45° to some of the tubes so that the stress-strain
data to failure could be obtained. Ohe of these curves is
shown in Figure 15. The shear failure data are presented in
Table I and Figures 16 and 17 show the test set-up and a
failed tube, reépectively._

Once the five basic failure strengths of the material
are.knownJ the simple strength tensors can be easily calcu-
lated Gsing the relations given in Egq. (4). These values

are listed in Table II. Using the stability condition (Ref.

- w2 > 0, the bounds on the interaction strength

N Fy4 Fjj ij

tensors can also be calculated (Table II).

3.2 Quadratic Interaction Strength Tensor Components (Fijj

It was shown in the previous section that the deter-
mination of the Fi and Fii (L =1, 2, 6) strength tensors re-
quires only simple uniaxial tension, compression and torsion
127 Fie
and Foe require biaxial stress experiments in which very

tests. On the other hand , the interaction tensors F

strict control must be maintained over the biaxial stress

ratio, B =(Ti/Ga in order to achieve sufficient test accuracy
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to correctly measure the Fij terms. In Ref. 8, Wu has shown
that the best resoclution of the interaction tensors is ob-
tained by using an optimal value-of the biaxialrstress ratio
together with the most suitable stress state since the re-
solution of the interaction tensor is dependent on both of
these variables. However, the major difficulty that imme-
diately arises is the fact that the full strength equation (1)
must be employed, thus introducing cubic (and higher order)
terms. As noted earlier, we shall restrict bur attention
only to a cubic formulation.

Consider, for example, the relative scatter (or resolu-
tion} of the interaction tensor component F,,. From Ref. (6)
‘this is given by ,
VA pr = aFm A,
- d T, 3

(5)

where(T2 is the failure stress of a biaxial test at a given
-~

stress ratio of B12:=§rr/crz. 0*2 is obtained as a root of

the failure equation (1) which can be re-written in the form

(Ref. 6},

' 2 ~ 3 i 2 '
(3Fnz By, + 3 F,, Brz)crz + (F"iBn_ +2F, B,

+F22)6:22 + (F B;2+_F2)€5 = 1 ©)

whereCT'6 = 0 by definition.
In order to alleviate the experimental requirements

for determining F12’ as a first approximation we shall assume
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that the cubic contribution to the strength (i.e., Fi,, and
F112 terms) is negligible for the 0° and 90° configuration.
Coyéequently, one ‘can then estimate F12 and subsequently
employ other complex load tests to assess the accuracy of

its value. Based on these results, it is possible to estimate
F and then reiterate to correct F,.,. This

122" 7112 12

procedure can be repeated to arrive at final values for Fyor

values for F

F112 and F122.

Hence, neglecting the cubic terms one obtains

F, 5!
ol —(RBa 2R v B vR R )G,
00 lg \ Bn 25, 28,
where
~ - + . 2 2
Gi — '—( ¥‘E%2'*Fi) - [(Eitﬁz'kFE) + 4'(Fi|E%2
N Wz s 2 .
+ 25, By, + Fzz)] /2(F,,E5‘2+2FHBQ+FQ) (8)
The optimum biaxial stress ratio B12 occurs when.
dw, | oW, oW, 48 o o)
dBy g OPn 65‘2 4B
where ¥ _ {aFs Af'j‘;
Fea G2
= scatter magnification factor (Ref. 6).
Substituting into Eqg. (95 vields
“~ - o 2
2%(ﬁBQ+ﬁ;>+PI "[2%(ﬁ9n+2&ﬁ%
2(3:‘2 (Fn B]ér- 1:_’22).._ FZ +F22>+ F\ Bl2 +- FZ]
(10)

By, (BiaF +Fy)
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) ot
where ; can be determined from Eg. (8). To obtain the
best estimate for Fl2’ a set of experiments must be performed

since the optimal value for B depends on F "assuming the

12

other tensor strength components are known.

127

Before any strength tests could be carried out to de-
termine the interaction tensor components, an analysis had
to be done to determine the optimal biaxial stress ratios for
each stress state. This was accomplished once the bounds on
each of the interaction tensors were known (Table Ii).

Again, for example, consider the F interaction tensor.

12

Once the constants Fl' F2r Fll’ F22 and the bounds on F are

12
determined, it is a éimple matter to substitute these into

Egs. (8) and (10) to estimate the optimal biaxial stress

ratio for various wvalues of F

12 within the bounds of the

stability condition. There are four roots of Eg. (8) for each

value of Fl2’ one for each stress quadrant. . Then, the resolu-
tion of F12 for the optimal ratios ﬁzmust be plotted to de-
termine in which stress quadrant the testing should be done.

The resolution of F12 is given by the following relation;

AR
12 - ....(F“BQ_ + 2 F"Z + FZZ J\--F\ + Tz

AT /T, B 2T 2B,

(11)

When these two graphs have been obtained, it remains to decide
on the method of application of the biaxial stress state and
then to begin tHe iterative procedure to determine the value
of F12' This method is equally applicable to the détermiha—

tion of F16 and FZG'
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FlZ Interaction Tensor

Figures 18 and 19 are graphs of the optimal biaxial

stress ratio to be used in the determination of F12 and the

attainable resolution of F12 for a given optimal Blz'

these figures it is evident that for F12 > 0, a longitudinal

From

tension~-transverse compression ((Tli> O,ETE-C 0) experiment

with the ratio B in the range of - 14.4 to - 15.6 is optimal,

12

and a longitudinal compression-transverse compression (G}ﬁéi

O,CTZ < 0) experiment with the ratio B in the range 13.2

12

12~<.0. The tension-compression ex-

periment was chosen because it was the most convenient teést

to 15.4 is optimal for F

for a tubular specimen. A combination of internal pressure'
and axial compressive loading was used to provide the required
biaxial stress state.

The specimens tested were unidirectional three ply
laminates with © = 90°. The tubes were continuously wrapped
from a single piece of pre-preg tape and had a 1/4 inch over-
lap at the seam for load transfer, A 1/16 inch polyurethane
liner was spuncast inside each specimen to prevent any damage
that might be caused by the o0il used in the internal pressure
apparatus;

A schematic diagram and pictures of the actual test
set-up are shown in Figures 20 and 21, An air-operated
hydraulic oil pump was used to maintain the reservoir at a
pressure of approkimately 6,000 psi. The specimens were

pressurzed from this reservoir by adjusting a flow valve
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while monitoring fhe internal pressure by means of a pressure
transducer downstream from the"valve. The speqimens Qere
.mounted in a Tinius Olsen 60,000 lb. Universal Testing Ma-
chine which provided the axial compressive load. This load
was converted to a voltage by means of a potentiometer mounted
in "the testing machine. By knowing the pressure transducer's
ca;ibration in ﬁsi/volt and the testing machine's calibra-~
tion in 1lb/volt, the required pressure versus axial com-
pressive load curve can be plotted for a particular biaxial
stress ratio Blz’ This curve was recorded on an X - Y plotter
having internal pressure and axial compressive load as inputs.
The valve was opened just enough to allow a slow; steady in=-
crease in pressure in the tube, while the amouﬁt of axial

load applied by the testing machine was controlled manually

to ensare that the loading followed the pre-calculated load
curve up to failure. In this way, a constant biaxial stress.
ratio was maintained throughout the test. Using the values

of the internal pressure and compressive load at failure,

the failure stresses@'l andkfz were calculated and a value

for the F,, tensor was determined from the following equation:

2

- 1 - 2
Flz = W[ 1 (Fll (rl + Fzz(]'z “+ Fl ql + FZG‘?..)] (12)

172
This method provided a controlled, constant ratio bi-
axial loading as is evident in Figure 22 which shows the actual

loading curve in comparison to the calculated loading curve

for a biaxial stress ratio of - 14.2. The results of the
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iteration procedure to determine the value of F are listed

12
in Table III. ' The average value ¢f thé.Fiz tensor for this
material was detérmined to be - 6.387 x 10~ % (K.s.I.) 2.

Even though the experimentally determined value of

4 4 2

lies in the range - 5.933 x 10 ~ to - 6.690 x 10 (R.S.I.),

Fyo

tension-compression tests were used instead of compression-
compression tests, as is indicated in Figure 19, to obtain

the best resolution of the F12 tensor because the latter mode
of testing was quite inconvenient to use with tubular speci-
mens and this testing machine. Figﬁres 23 and‘24 Show’typical
failure modes for the F12 test specimens. Other failure

tests were conducted to verify this value of F Details

12°

of these results and analysis of the cubic int eraction terms

can be found in Section 6.

F16 and F Interaction Tensors

26

The tests to determine the values of F16 and F26

strength tensors have not yet been done. However, the optimal

biaxial stress ratios for the four stress stateg and the
attainable resolutions of the tensors have been calculated.
These aré plotted in Figures 25 to 28 and are summarized in
Table IIT,.

However, 1t should be noted that since F6 = 0, this
would indicate that the sign of the shear stress does not

affect the failure stress. Consequently, to remove this shear

stress "sign" effect from the failure equation, all odd-order
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terms in CFG should he set to zero. Thus it is proposed to
let F16 = F26 = 0 in our subsegquent failure analyses. This
will of course also apply to the cubic terms in§olving odd~
order‘T% components.

3.3 The Effect of Temperature on the StrengthATensor
Components

A preliminary test programme was undertaken to eval-
uate the effects of varying ambient temperature from - 80°F
to + 250°F on the orthotropic elastic constants and burst
strength of 3-ply, 90° laminated tubes. Appendix B contains
a detailed discussion of the test methods used together with
the.required analysis. A summary of the experimental re-
sults is contained in Table IV. It should be noted that two
test conditions were‘investigated using internal pressure
loading; (l)'free axial expansion of ends, and (2) zero axial
. displacement due to imposed external constraints. The actual
burst préssures recorded in Table IV are for case (1) load-
ing;

In order to demonsfrate how this test data can be used
to estimate the variation in strength tensors with temperature,
one must first consider the ability of the strength criterion
to predict failure at room temperature where the strength com-
ponents are already known. For a € = 900, 3-ply laminated

tube under internal pressure,

0. =30, £ prR/3t

1 Y ) (13)
‘3’2 = G’X = pR/6t
G—F = [
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Neglecting the cubic terms F122” Fllé' the strength equation

can be written as,
N .
e 2

Substituting for the strength components (see Tables IT and
III), the predicted failure stress is(r2 = 3365 psi. This
agrees quite well with the average measuréd value of 3442 psi
(within 3%) shown in Table IV at T = 70°F. Thus, the aséump—
tion of Fipp @nd F;,, being of second order (for & = 90°%)
appears valid. The interesting feature of Eq. (14) is that
if one neglects the Fll’ F12 and Fl_terms for the 6 = 90°
configuration tests, then the resulting approximation yields
a failure stress ((TZ) of 3246 psi:. This value lies within
4% of the predicted strength based on the inclusion of all
terms. Cbnsequently, one can now obtaih an estimate of the
temperature variation of the F,, and F, terms from the follow-~
ing strength equation; |

T2 Fy, +F, T, =1 (15)

where we shall define the reference temperature (RT) strength

tensor components as

_ 1 1
Forr =%~ ¥
= Y' - Y {16}
YY! :
_ 1
F22RT - ?"'ft

We shall further assume that at some arbitrary temperature (T),

these strength components can be estimated by
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F2py o

2 " mm

F2) (an

(17K) 2

where Y {T)

i

(1+ k)Y

Y'(T) = (1 + k) ¥

k

a constant
Using the strength -eguation (15) to predict failure at some
temperature T, one has
2 —
Foo () T,7(T) + F (T) QE(T) =1
or substituting for F22(T) and FE(T) from Eg. (17) gives,

2 T - 2 T} =
ol - X Fz R‘_G-'.-Z.( ) FzZRTCrz ( i) O (18)

where ol = (1 + k),

Consequeﬁ%ly,‘knowing the Fopp and F22Rf values as well as
the failure stressescré(T) at various temperatures, one can
solve for ol(T). Thus one can construct plots of the varia-
tion in the strength tensor components F2(T) and FEZ(T) as
a function of temperature. .

Based on the data shown in Table IV for circular cyl-
indrical tubes with a mean radius R = 1.015" and a ply thiek-
ness t = 0.010", the strength terms were then calculated for
the various temperatures. These results are shown in Figure
29,

3.4 The Effect of Post Cure Time cn the Strength Tensor
Compcnents '

Similar to the temperature study, an investigation
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was made on the effects of varying post cure times (0 to 24
hrs) on the measured orthotropic elastic constants and the

burst pressure. A description-of this work can be found in
Appendix C, with a summary of the results listed in Table V.
Since the test procedures and analysis are identical to the
thermél study previously discussed, it is énly necessary to

consider the appropriate strength tensors F, and F

2 22°

Based on the OHR post cure data,.an average failure
stress ofCTé = 3112 psi was oﬁtained. This can be compared
with the predicted (room temperature) value of 3365 psi for
a 3 ply, 8 = 90° configuration which agrees within 8%.
Again, using the same-arguﬁent posed in Section 3.3, the var-

iation in F, and Fy, with post cure time was estimated and

the results plotted in Fig. 30.
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4. MATERTAL: PROPERTY CHARACTERIZATION TESTS

Although this report is primarily concerned with the evalu-
ation of a strength criterion for the design of composite structures,

it is also necessary to include the determination of the lamina

orthotropic stiffness parameters. This arises because in the analysis

of laminated configurations consisting of many plies oriented at

arbitrary angles ¢ relative to the structural axes, it is necessary
to campute the individual ply stresses (¢, 09, 0g OF Oyt Gy" -Txy)
and strains. This will be discussed later in Section 7. Suffice
it to say at this point that the plane stress distrubution in sane

lamina of orientation 6 (see Fig. 3) is related to the overall struc-

_ tural strain matrix in the following way;

O Q11 Q12 Oi6 €
o, = 5}1 Qo2 Qo &y
Txy . 051 Q62 Qg6 LYy
where '
511 =U; + U; cos 26 + Uy cos 46
522 =U; = Uy, cos 26 + Uy cos 46
01 ¥§21 = Uy, — Uz cos 48
Q16 = Qg1 =(Uz/2)sin 26 + Uz sin 46
626 = 652 =(U2/2)Sj_n 26 - U3 sin 49
6@5 = Ug — Uy cos 40
and

1
Up = g3 Q11 + 3 Qop + 2052 + 4 Qgp)

(19

(20)
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Up = %4Q11 - Q22)

Uz = %{Qll + Qo2 = 2 Q15 - 4 Qg¢)
Uy = %4911 + Qop + 6 Q12 — 4 Q)
Us = %”(Qll + Qo2 = 21 + 4 Qge)

and

Q11 = Epn/(1 - vioval)
Qo2 = Ezp/(1 = vipvo;)

Q12 = Qo1 = vy1 E11/(L = vy voy)

Qe = Qs

Qse = Gi12

0 for an orthotropic lamina

Equations (19) to (22) are based on three major assumptions:
(a) linear response; |
(b) the laminae exhibit identical structural strains under a given
load system;
(c) the individual laminae can be regarded as homogéneous orthotropic
materialg.
Clearly the assumption of linear stress/strain behaviour requires
experimental verification to def;ne the limits for which_this is
true. Furthermore, one must also evaluate the actual orthotropic
constents as defined by E;j, Ezp, vip (or vyy) and Gy,
The following sections describe the experimental methods
used to determine the orthotiopic constants and the results obtained.

4.1 EVALUATICN OF ORTHOTROPIC ELASTIC CONSTANTS

The material propertics E;;, E;,, and G, were obtained
from stress-strain data of tubes with 8 = 6° and 90° lecaded in axial

tension and tubes with § = 90° loaded in pure torsion respectively.

(21)

(22)
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These material properties were calculated from basic relationships
and are listed in Table VI.

Four other specimens were also characterized using the
rethod outlined in Ref. 26. These specimens were all made up of

four plies and had the following fibre orientations: o° P OO, OO, 0%;

O

O O @] Q O , 900’ g,

, -30%; -60°, 60°, 60°, -60°; 90°, 90°
Three 350 ohm, 0.5 inch strain gaﬁges were bonded onto each tube,
oriented in the axial, circumferential and -45° directions. All of
the strain gauges were positioned at the midlength of the specimens.
Each tube was then potted in aluminum endplates using a rocm temper-
ature cur_j_ng EPOXY .

The characterization procedure consisted of applying
separately to each tube pure axial campression, internal pressure
and pure tc;;:sion. By monitoring the load tranéducers and strain
~gauges on an ¥X-Y plotter, a plot of load versus strain was obtained '

during each of the loading cycles for each of the strain gauges.
Fram these curves, the nine values of load/strain were calculated
for each tube. These values along with the ply thickness and fibre
~orientation were the input data for the material properties charac—
terization computer program listed in Ref, 26. This program cal-
culated, among other things, the material properties Ejy, E;q, Gl 24
vy1 and vy, and these are also listed in Table VI along with the
manufacturer's specifications.

It can readily be seen by comparing the unidirectional
tube data with the calculated values for the + & laminated tubes

that for the E;;, B, and Gy, parameters, the results agree within 11%.
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In thé subsequent failure analyses, the unidirectional tube data
will be used for these three orthotropic constants, while the major
and minor Poisson ratio terms obtained fram the + 8 tests will be
cmployed.

Of particular interest for stress calculations is the range
" of linear bechaviour as shown in Figs. 9, 14 and 15. From this data,

the following limits should be considered on the use of Eq. (19):

~ 88 ksi < o7 < 121 ksi
~ 6 ksi < 0, < 3.3 ksi ' - (23)

los| < 3 ksi

where 1 and 2 denote the fiber and transverse directions, respectively.

4.2 THE EFFECT OF TEMPERATURE CN THE ORTHOTROPIC CONSTANTS

The effect of varying ambient temperature not only changes
the strength parameters.{as shown previously in Section 3.3) but
also the orthotropic stiffness coefficients. Appendix B contains
a camplete description of the tests perfommed over a tamperature
range of -80°F to +250°F. as fa£ as thé elastic constants are con-
cerned, Figs. B.4 to B.10 illustrate the stress/strain carves obtained
which are quite linear except near fracture in the high temperature
range (T_3_2000F). The actual variations in the moduli E;, and E,»
are shown in Figs. B.11l to B.l4 and summarized in Table IV. The
major thermal effect is found in E,, as expected since it reflects
primarily the epaxy matrix response. Estimates of the temnperature

variation in the Poisson ratio terms were also made. RAgain, the
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dominant change is in thé vy] parameter.

Knowing both the change in strength and orthotropic
stiffness parameters with temperature permits the designer to
calculate the failure loads of camposite structures at various
thermal conditions. Although all ﬁaraméters have not yet been
determined as a function of temperature, the methodology outlined in
this report should provide the means for obtaining the necessary
. data.

4.3 THE EFFECT OF POST CURE TIME ON THE ORTHOTROPIC CONSTANTS

As in the thermal investigation, the effect of varying
the post cure time was studied to assess the change in the ortho-
tropic constants. This aépect of the programme is discussed in
Appendix C, with a sumary of the results coﬁtained in Table V.
In general, it would appear that substantial variations in post cure
time dornot drastically alter either the stiffness or strength
parameters. This is quite useful from a manufacturing viewpoint
gince ovef¥curing of the material does not appear to be degrading.
This of course would not hold true when one imposes too short a
cure time. Other fabrication pagameters such as cool-down rate
should also be investigated to determine the tolerance limits in

terms of their effect on mechanical properties.

5, 'STRENGTH TESTS ‘0N LAMINATED TUBES

An extensive experimental investigation was undertaken to

evaluate the strength of laminated 4 ply tubes having a symmetric
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configurati?n (-6, +8, +8, —8) With\¥e5péct to the mid;plahe.“ TQO
different i;éd conditicns were employed, intermal preséure and
cambined loading of internal pressure plus torsion. The major
purpose of both series of tests was to obtain failure data as a
function of fibre orientation to camwpare with predicted values based '
on the tensor polyncomial strength criterion which is discussed in
. Section 6.

5.1 BIAXYAI, STFENGIH TESTS OF + @ LAMINATED TUBES

In the biaxial strength tests used to obtain the complex
failure strengfhs, the tubes with the orientations listed below were
loaded to failure by internal pressure. A total of fifteen four ply
tubés were tested - three each of the following fibre orientations
(see ?able VII);

0°, 0%, 0%, 0% -30°, 309, 30°, -30°; -45°, 45°, 45°, -45°;

O Q (e} O O O

-60°, 60°, 60°, -60°; 90°, 90°, 90°, 90°.

The same air operated.hydraulic o0il pup that was used in
the F;, tests was also used in this.set.of tests (see Fig. 31). The
tube's internal'pressure was again monitored by a pressure trans-
ducer and its output was plotted on an X-Y recorder to obtain an
accurate determination of the failure pressure.

Fracture was evident by a "weeping" through the walls
of the tube in which small droplets of oil appeared on the surface |
of the tube indicating that the matrix had failed. In the three
tubes other than the circumferential and longitudinal wraps, this

"weeping" was not localized at all, but rather, it occurred at many

places around the circumference of the tube at the same time, The
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internal pressure started to drop and could not be maintained even
with an increased flow rate when the "weeping" started. Fracture
was more pronounced in the 6 = 0° and 6 = 90° tubes as actual splits
appeared in the matrix parallel to the fibre direction. A summary
of the experimental results is contained in Table VIII. ILater, in
Section 6, a camparison between the predicted values and this data

will be made.

5.2 STRENGTH OF + 6 IAMINATED TUBES SUBJECTED TO INTERJAL PRESSURE AND
TORSION '

Of the fifteen tubes manufactured for this investigation
(see Table IX) ; twelve were tested to failu-re under corbined torsion
and internal pressure 1oading. Each tube was first subjected to
a positive constant torque of 500 in.-lb. and then loaded to failure
under internal pressure. The cénstanﬁ torque was applied using a
Tinius Olsen universal testing machine modified for torsional loading.
Internal pressure was generated using a lspecially designed hydraulic
pump. In each case, the test specimen was campletely filled with
hydraulic fluid before being mounted into the testing machine, with
care taken to bleed all trapped air from the hydraulic lines.
Hydraulic pressures were recorded using a Kistler Model 607A quartz
pressure transducer with the ocutput plotted on an X-Y recorder.

The test specimens were in all cases judged to have failed
when the first signs of hydraulic fluid oould be seen on the outer
surface of the tube. Accampanying these first signs of hydraulic
fluid was an immediate drop in the recorded pressure.

Figure 32 shows a photograph of the test apparatus used

to accawplish the required combined loading. A surmmary of the failwre
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pressures can be found in Table X. Again, as with the biaxial
strength tests, a camparison with predicted values will be done in

Section 6.

6. EVALUATTON OF THE TENSOR POLYNOMIAL FATLURE CRTTERION

The general form of the tensor polynomial failure criterion

propoéed Ly Wu is

_ Fi Ui + Fij ci oj 4 Fijk Gi Uj Gk + i
< 1 no failure
= f(o) { =1 failure | | (24)

> 1 exceeded failure

for i, i, k,=1, 2,3, ... 6. Fi, Fij and Fijk are strength tensors

of the 2nd, 4th and 6th rank, respectively. If one restricts the
analysis to a plane stress state and considers only a cubic formul-
ation as being a reasonable representation of the failure surface,
then Eg. (24) reduces to

Fi0) + Fpop + Fgog + F11012 + Fpp052 + Fggop?

+ 2F120102 + 2F160'10'6 + 2F260206 + 3F11601266

-+ 3F1250‘10‘20’6 + 3F1120‘1202 + 3F221010’22 + 3F16651062

+ 3F72502%06 + 3F2660206° + F11101° + Fpp205° + Fgge0e® = 1 (25)
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if it is further assumed that the material has some foﬁn of smtw
(Ref. 6) such that Fij: Fji for i # j and Fijk = Fikj = Fjj_k =
iji = Fkij = iji' Since it has also been showm {(Ref. 6} that
inclusion of the cubic terms Fiii (for i = 1, 2 and '6) is redundant,
therefore they can be awnitted. OCne other important simplification
of Eq. (25) can also result if it cén be experimentally determined
that a lamina exhibits identical strength for both positive and
negative shear. If this condition is satisfied, then all odd-order

terms in g can be set to zero to remove the shear stress "sign"

dependence. Hence Eq. (25) reduces to

F101 + F202 + F11a12 + ngﬂzz + F56652
+ 2F15010; + 3F1y501%0, + 3Fp,10,%0

+ 3F16601052 + 3F26602062 = ]

Based on the expernmntal results (refer to Table I) used
to‘ evéluate the strenéth tensor .components (Fi and Fij) described
in Section 3, it was found (Fig. 15) that the sign of the shear
stress did not significantly affect the failure stress. Thus Eq.
(26) is proposed as a failure criterion for the glass-epoxy material
being studied. As shown earlier, the following strength tensor

camponents have been determined experimentally;

(26)
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-3.076 x 1073 (ksi)™!

F; =
Fo = 2.344 x 107! (ksi)™! )
Fe =0

Fi1 ='9.398 x 1075 (ksi) ™2

Foo = 2,270 x 10~2 (ksi}™?

il

Fgo = 2,142 x 1072 (ksi)™2

fl

Fiz = -6.387 x 107" (ksi)™2

. ESTIMATE OF CUBIC INTERACTION TERMS.(Fijk)

Since no direct experimenfal measurements Qere made‘with the
intension of evaluating the cubic interaction terms, it is necessary
at tﬁis stage to attempt to estimate their values based on the test
data obtained.

It can bg shown that as 0 -+ 600, the shear stress term
og becomes very small for internal pressure loading acting alcne.
However, since the failure pressure increases by over a factor of
five canpared to the 0° laminate {see Table VIII), then the inter-
action terms F),, and Fy;, must play a significant role for this
60° orientation. On the other hand, since the quadratic form of the

failure criterion provides accurate estimates of the strength for

(27)
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th.e_OO and 90° confi§urations, then the cubic terms must have a small

influence in these fiber angle ranges. Similarly, one can argue

that for the internal pressure + torgue tests, the major contributions
fran the cubic terms should occur in the 40°-70° range. Consequently,
to evaluate the four cubic terms Fi12+ F122, Fi56s Foee:s it was
assuned that the other tensor camponents were known (i.é. r See Eq.
{27}) and the cubic polynomial (Eg. 26) was fitted to the test data
at 45° and 60° for both the pressure and pressure-torsion cases,

This yielded the following values for the cubic temms;

Fi1p = 1.6671 x 107" (ksi)™3

i

Fi22

~1.0575 x 1072 {ksi)~?

Fige = 3.9985 x 107% (ksi)™3

I

Fa66 = -1.3726 x 1073 (ksi)™3

One of the difficulties asscciated with a cubic formulation
is that of ensuring a real positive root corresponding to a failure
pressure. This of course depends on the value of the discriminant
of the coefficients. For example, consider a general cubic polynomial

of the form
x3+bx? +x+d=0

Hence, the discriminant can be defined by

(28)

(29)
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A = 18 bcd - 4 b3d + b?c? - 4c? - 27 g2
<0 one real root, two complex -
=0 all roots real, two are equal

>0 three roots real and unequal

Since the strength coefficientsvary from the mean values defined by
Egs. (27) and (28), it is quite possible for A to assume any of the
three conditions stated above for a particular laminate configuration.
fhis is readily apparent in Fig., 33 where the cubic failure poly-
namial has been plotted for the i_450 laminae. In one case (8 = -45%),
two distinct positive roots were cbtained differing by a factor of
two. Hence, from‘a physical viewpoint, the lowest value éhould be
taken. On the other hand, for & = +450, the polynomial does not
cross, but the "error" is very.small. In other words, because of
coefficient variations, one can consider the maxirmm aé a "double
root"”, thus yielding a failure load.

One other camparison tﬁat can be made is between the quad-
ratic and cubic failure predictipns. Fiéﬁre 34 contains both poly-
nomial solutions for the case of symmetric laminated tubes subjected
to internal pressure. In this instance, failure of the + ¢ and - ©
laminae is assumed to occur at the same load. It is quite evident
that the cubic terms are most significant in the fiber angle range
of 40° to 70°. Although the quadratic solution provides the best
estimates of the failure pressures at 0° and 900, there is some
discrepancy in the cubic solution near 90°. One other feature worth

noting is the somewhat "clipped" responée of the cubic prediction
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near the peak. It might well be that emall variations in the cubic
parameters could result in a smoother distribution. In addition,
no correction was made to the interaction parameter Fj, due to the
presence of the Fi,, and Fy,, terms. Again, this may lead to a

different response.

7. COMPARTSON COF PREDICTED STRENGTH WITH TEST DATA

This section of the report presents the analysis required
to campute both the principal lamina stresses and the failure stresses
as a function of ply orientation. The purpose here is to test the
validity of the cubic approximation of the tensor polyncmial by
comparing predicted failure loads with the test data contained in
SéctionMS.\

7.1 CALCULATION OF LAMINA PRINCIPAL STRESS_ES ‘

In order to utilize the failure equation, one is first
confronted with the calcuiation of the lamina principal stresses.
Assuming linear elastic behaviour, the lamina inplane stresses
corresponding to the structural éxes (xt,y) can be determined for any
ply orientation .(9) fram Egs. (19). This relation further assumes
that for a given external load system, the structural strains define
the laminae strains. Hence, based on known applied loads, the strain

natrix can be determined fram

EX ] | -1 | NX |
A. .
E = +J N
% y
N
Ty %y |

(31)
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where the load matrix represents forces/unit length and each of the

Aij terms is given by

n

Pis = LTy - 5e) (32)

where k = 1, 2, ... n defines the laminae . For specially ortho-

tropic construction (which exists for a symmetric'laminate), then

A]s = A25 =0 . (33)
| - ﬁ
Consequently, Bso Ayp
I N
N Aa Ayl '
= -= = 0 34)
- 1
) 0 0
Be6
: J

where A = Aj; Asp — A1»2. Substituting Egs. (31) and (34) into

Eg. (19) yields the lamina stresses

I

o, 011 Q12 Q16 Rpp/A -App/A 0 N

Oy = [Q21 Q2 Qo6| |-A12/A Apn/A O N, (35)
j Qb1 Q2 Qs 0 0 1l/hgg|| N

‘Txy‘ 8 L B L 4 L xy.

The final step in the analysis is the transformation from the struc-
tural axes (x,y) to the principal lamina axes (1,2) for each ply
having an orientation 6 with respect to the structural axes. This

yields the in-plane principal\lamina stresses,
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g3
= 5 -1 26
T2 [T] [Ql]] [Alj] [N] (36)
O¢
8
where m?2 n? + 2 m
[T),q = n? m? +2m |where m = cos 6 - (37)
Fm +m (W - n?) n=sin @

7.2 CALCULATION OF FATLURE STRESSES FOR A LAMINATED STRUCTURE

Using the failure criterion defined by Eq. (26} where the
sign of the shear stress (og) is assumed not to affect the strength
predictioiw., simaltaneocus failure of all laminae can occur for certain
;oad conditions (such as internal pressure for example) if the struc-
ture is of special oﬁ:‘thotropic: construction (A = A = 0). In
general ha;ever, for arbitrary loading (such as internal pressure
and torsion for example), the individual laminae will have differ-
ent principal stress distributions even if the configuration is
specially orthotropic. For these cases, each lamina must be
énalyzed separately and the failure criterion applied to determine
which lamina (or pairs of laminae) will fail first. Subsequently,
the stresses must be adjusted due to partial structural failure and
the failure condition applied again. This rulti-mode type of
failure analysis !should then provide an estimate of the overall

failure loads.

7.3 FATIIURE PREDICTIONS FOR THE INTERNAL PRESSURE TESTS ON SYMMETRIC
TAMINATED TUEES . '

Using the mean values of the orthotropic elastic constants

listed in Table VI,



I

)]
e
r

il

H

V1z

i

Va1

the orthotropic

Q1 =

Q22
Qo =

Qg =

Qep =

Hence the general orthotropic stiffness coefficients can be readily

0.477
0.121
0.420

0.336

x 107 psi
x 107 psi

x 10°% psi

0.0855
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stiffness parameters can be calculated,

By /{1 = vigvay)

Ezp/ {1 =~ vipva1)

Qo1 =
Qg1 =

Gi2 =

vop Ep3/ (1

0

I

0.491 x 107 psi
0.125 x 107 psi

V1sVey) = 0.042 x 107 psi

0.042 x 107 psi

determined aé a function of 6 using Egs. (20) and (21).

For the case of intemal pressure loading with the ends

free to expand axially, the generalized load matrix is given by

thus, substituting Eq. (40) and the appropriate ﬁij' Aij terms into
Eqg. (35) yields the lamina in~plane stresses which will take the

following form;

it

R

rl/2'1
1

0
\ E

(38)

{39)

(40)
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(o, | " 0.1250]
X
= PR
o, EX 1 0.2500 | | (41)
T T (8)
/ L J

where t = lamina thickness. It is assumed that the laminate is
canprised of four equal thickness laminae. Hence the o and oy stresses
are identical for each ply orientation ¢ and Cnly the shear stress

T_Xy varies with 6. The final step in the analysis once Txy(e‘)l is

known 1s the multiplication by the transformation matrix [T] +0 given
by Eq. (37). - |
Based on this method of analysis, a canputer progranme was
written to determine the lamina principal stresses‘ and solve
" the cubic equation (26) defining the failure condition (see 2opendix
D). The appropriate tensoz; strength corponents given by Eqgs. (27)
and (28) were used as the coefficients of Eg. (26). The
actual failure. pressures are recorded in Table VIIT and é graphical
comparison with the experimental values is presented in Fig. 35 as a
function of ply orientation a ‘Although the cubic terms were cbtained
from solutions of tﬁe pol;mcfnial matched to the 45° and 60° data, the
remaining tes-;t results are also in reasonable agreement with the
predicted }:es;)onse. Figure 36 presents the variation in principal
failure stresses with fiber angle. These stresses can then be con-
pared with the linear elastic limit values shown in Figs. 9, 14 and
15. It can be scen that the shear stress (cg) is only slightly in the
nonlinear range and thus the assumption of linear elastic behaviour

is acceptable. Moreover, it would appear that the failure mode
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throughout the whole range of cbnfigurations was defined by a matrix
tensile fracture.

7.4 FAILURE PREDICTIONS FOR THE COMBINED IOADING TESTS (INTERNAL
PRESSURE AND TORSICN) ON SYMMETRIC LAMINATED TUBES

. Although the tube configurations studied here are similar
t; those described previcusly (4 ply symmetric laminétes), the load
condition has been complicated by the addition of a constant torque
(= 500 in-1hg) to the internal pressure loads. TFor pure torsion (T}
and constant shear stress acrosslthe laminate thicknéss.E'(= 4t),

then the following equation holds,
T = 2Nya (42)
where A = enclosed area
e No= TR : {43}
= 0.0765 kips/in

Thus the generalized load matrix for this case is given by

N, pPR/2
N = R

v P (44)
N L0765

xy
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It can readily be shown tI;at with the addition of the torque
term, the principal stresses in the +6 and -8 laminae differ signifi-
cantly. Consequently, a failure prediction must be made for both sets
of laminae at each filber orientation to determine which laminae will
fail first (see camputer programre in 2Appendix D). The results of
these calculations are shown in Fig. 37 where both lower bound and
median response curves have been indicated. Of some intere.st is the
fact that initial failure conaitions can occur in different larnjnae,
depending on the fiber orientation. The lower bound curve can be
used as a conservative estimate of the overall failure load 1f one
assumes that once a set of laminae have fractured, the remaining
structure cannét withstand the resulting load and thus coincident
failure results. However, one can expect that scame residual strength
remains_even after initial matrlx failure in the first set of laminae
and coupléd with the- other laminae, the ul't‘:i_mate structural failure
stress should be somewhat higher than the lower bound predictions.
Consequently, the median response curve can be used as a first approx-
imation for camparison with the _experjmeﬁtal failure leads. This
was done in Fig. 38 where once again, general agreement was obtained.

. Based on this failure analysis, the predigted principal
stresses are shown for both +& laminae in Fig. 39. Again it can be
seen that the assumption of linear elastic behaviour was reasonable

and the failure mode was one of matrix tensile fracture.

8. CONCLUSIONS

High quality laminated tubular specimens have been manu-



47

factured using a belt wrapper apparatus and subjected fo tﬁé )
following load conditions: uniaxial tension and canpression, puré
torsion, internal pressureband conbined torsion and internal pressure.
Failure loads were obtained to evaluate the principal tensor strength
parameters (Fi, Foot i=1,2,6) apd the quadratic interaction term -
Fi5. It was then shown that a duadratic failure formalation was too
conservative and a cubic polynamial can in fact be used to predict
with reasonable confidence the failure léads for arbitrary fiber
orientations. This was done on the basis of estimating four cubic
parameters (Fyss, Fiao, Firegs Foge ) Using test data at 6 = 45° and

60°.

Consequently, it is highly desirable to not only cbtain more
test data for comparison purposes but refine the estimates of these
cubic‘terms. In addition, various failure modes of the tubes wexre
considered. The case of intérnal pressure loading of symmetric
laminated tubes resulted in simultaneous failure of all laminae.
However, the addition of torsion to the loading indicatea that faiie
ure of same iaminae should precede overall structural failure,

Experiments were also performed to assess the effects of
ambient temperature and post cure time on the orthotropic properties
as well as on the failure parameters. Although only limited data

were obtained, it was demonstrated how these effects can be inter-

preted and some results were presented for two strength parameters.
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TABLE T

TENSTLE, COMPRESSIVE, AND SHEAR FRACTURE DATA

SPECIMEN NO. - ULTIMATE STRENGTH (P.S.I1.)

Longitudinal Tensile Strength Tests

2a 0 ' | 131,158
2b 0* ' 111,004
3a 0° ‘ 119,735
3b ©0° ' 121,336
Mean Value 120,808

Longitudinal Compressive Strength Tests

7a 0°- 83,784
70 0° 89,491
ga 0° 86,013
9a 0° 86,885
9 0° 91,629
18a 0° 88,676
19a 0° 87,091
Mean Value ' 88,081
Transverse Tensile Strength Tests
1a 90° (I) | 2,980
la 90° {II) | 3,520
3a 90° ﬂﬂ 3,20k
5a 90° (I) 5AGE Bmﬂm 3,150
5a  90° (:[I)wbaﬁw 3,338
6b 90° — 3,418
gb 90° 3,109

Mean Value 3,246



TABLE I (cont'd.)}

TENSILE, COMPRESSIVE AND SHEAR FRACTURE DATA

SPEC.IMEN NQ. ULTIMATE STRENGTH (P.S.I.)

Transverse Compressive Strength Tests

2a 90 : 13,158
3b 90°. | | 14,035
4b 90° 1k, 246
7 90° 12,218
gc 90° . . ©.13,819
16b 9o: ' 13,431
17a 90 - 14,114
Mean Value - 13,574

Shear Stfength Tests

L]

2b 90 | - 6,737
ha 90°(1) ‘ 6,777
ha 90°(II) i 6,851
5b 90° | 6,864
6a  90° ' 6,765
72 90° 6,497
176 90° 7,336

" Mean Value 6,832



TABLE 11

STRENGTH TENSORS

F; = -3.076 x 103  K.S.I."1
Fg = 0.0 - K.5.1.71

Fiq = 9.398 x 107 K.8.1.7%
Fop = 2.270 x 10~2 ’K.S.I.”z

Fge = 2.142 x 10-° K.S.I.m%
Flé < 1.460 x 1073 K.5.1.-2

Fip] == 1.419 x 1073 K.S.I.72

Fogl=c 2.205 x 102 K.5.1.7%



TABLE I1T_

INTERACTION STRENGTH TENSORS

TENSOR OPTIMAL STRESS STATE RANGE OF OPTIMAL B
Fioz~0.5 0170, B2<0  =14.0%0 /o B-15.6
Fio=g 0.5 ¢140, G240 15,5891 /6% 2 13.3
F16=0 T1>0, §<0 ~-15,6520 /04 2-16.35
Fi6=s O g,>0, x>0 - 16,3520 /0 P 15.65
Fog o= O A Tp,20, Gg>0 -0.89%20/0, & -1.0
Fog=2 O G20, Tg<o0 1.0%9/05 2 -0.89

F4i» TENSOR TESTS

SPECIMEN - PREDICTED MEASURE]j ULTIMATE COMPUTED

NUMBER 1/ > 1/ STRESS (K.S.I.) Fio (K.S.I.7%)
10a 90° -8.00 ~8.69 v = 108.8 1.869 x 10~k
7 o = -12,88 - . ,
10b 90° ~14.50 -15.49 @1 = 103.4  -6.690 x 104 )
. 7 T = -6.392
1la 90° -13.80 -13.33 @1 = 100.0 -6.539 x 1074 } »
_ g, = -6.911
13b  90° ~13.90 ~15.13 g7y = 105.4 ~5.933 x 1074
) 6‘2 = 6,669

X Mean Value of Fip = -6.387 x 10~k X.S5,I.=2



TABLE IV ELASTIC CONSTANTS AND TRANSVERSE BURST STRENGTH FOR SCOTCHPLY (1002)
TEST TEMPERATURES

TUBES AT VARIOUS

@aburst

TEST TUBE E11/p Esn/B Eqq Epo Y12 Voi
TEMPERA~ | DESIG- (psi) (psi) (psi) (psi) (psi)
TURE NATION (Mode 1)
|- s0°F | 210 90° | 6.23:106 | 1.50%106 | 5.86x106 | 1.50x106| o0.L82 0.123 4346
- 75°F | 23c 90° ) L399
- 45°F | 23b 90° | 6.43x10° | 1.76x100 | 6.32x100 | 1.73x106{ 0.250 0.068 1,186 .
~ 20°F | 23a 90° | 5.76x106 | 1.39x106 | s5.04x106 | 1.22x100) o0.721 0.173 1110
- 20°F | 22b 90° | 5.99x10® | 1.51x10% | 5.80x100 | 1..6x100] 0.356 0.089 4200
- 20°F 22¢ 90° | 4221,
70°F | 12c¢ 90° _ 3411
70°F | 13c 90° | 5.86x106 | 1.32x10° | 5.61x100 | 1.26x100| 0.437 0.098 3369
70°F | 11c 90° | 6.01x10% | 1.29x10% | 5.66x10% | 1.22x10°) o0.520 | o0.112 3545
158°F | 19b 90° | 6.40x10® | 1.,18x108 | 6.11x10% | 1.13x10%| 0.495 0.092 3216
158°F | 16a 90° | 6.35x10° | 1.15x108 | 6.07x100. | 1.10x106| 0.495 0.090 2876
200°F | 192 90° | 6.08x105 | 0.98x106 | 5.78x106 | 0.93x106( 0.552 0.089 2300
200°F 1lha 90° 2450
250°F | 14b 90° | 6.30x106 | 0.57x106 | 5.87x10% | 0.53x106] 0.875 0.079 1,05
R50°F 1Lc 90° 6.08x105 0.66x10% | 5.91x10° 0.65x10%| o0.511 0.056 1280
250°F 15a 90° 1325




TABLE V'  ELASTIC CONSTANTS AND TRANSVERSE BURST STRENGTH FOR SCOTCHPLY (1002) TUBES HAVING

DIFFERENT LENGTHS OF POST CURE

{

LENGTH OF |  TUBE E11/6 E2n/8 E11 E22 Vi Voq G,
POST CURE{ DESIG- (psi) (psi) (psi) (psi) (psi)
NATION (Mode 1)

0 Hrs| 182 90° | 5.806x108 | 1.307x106] 5.591x106}1.239x106 | 0.4832 0.1071 3058
0  uRS| 18v 90° |6.049x106| 1.417x106| 5.670x106{1.328x106 | 0.5176 | 0.1212 291,8
0 Hes| 18c 90° ‘ 3329
7 HR3| 21a 90° 3523
7 ERS| 21b 90° |6.054x100 | 1.329x106} 5.599x106{1.229x106 | 0.5852 0.1285 34,90
7 mrsl 21c 90° {5.855x100 ) 1.260x100} 5,543x100]1.193x106 | 0.L97% 0.1071 3279
16.75 HRS| 11c 90° [6.013x100 | 1.297x100] 5.663x106]1.222x106.| 0.5199 0.1122 3545
16.75 HRS{ 12c 90° 3511
16.75 HRS! 13c 90° {5.865x106} 1.319x108] 5.612x10%}1.262x100 | 0.4374 0,098l 3369
21, HRS| 20a 90° |5.978x106 | 1.283x106] 5,743x106|1.233x106 | 0.1280 | 0.0982 3653
24 HRS! 20b 90° |5.908x106 | 1.273x100! 5.426x106|1.169x106 | 0.6152 0.1326 3972
2l HRS | ° 3903

20c 90




SPECIMEN
NUMBER

TABLE VI

MATERIAL PROPERTIES

E E G
(158 P.5.T.) (106 P.5.T.) (106 P.5.1.)

V1o

Calculated Directly From Stress-Strain Curves

2b
3b

Oﬂ
Oﬂ

Mean'Value

3a
5a
5a
6b

)

Q0
90°(1)
90°(11)
90°

Mean Value

2b
La
Ta

90°
90°(1)
90°

Mean Value

1.245
1.157
1.284
1.157

1.211

O.431
0.408

0.420

Calculated Using the Characterization Computer Program.#

lec
6b
2b
7b
Lb

9b"

fe
10b

Mean

NI B
o
e
-]

- 90°

Values

b« 945
L.676
5.107
5 bh7
5.081
5.125
L .669
L. 876

4.991

1.170
1.226
1.426
.17,
1.645
1.420
1.248
1.416

1.341

X 4 gly eyhaders (»—) ‘\'.;'r,,*)

0.4888

0.4645 .

O k57k
0.5216
0.4082
0.4733
0.4215
0. 4844

0.465

0.3043
0.2827
0.2676
0.4165
0.2230
0.2377
0.407L
0.4313

0.3213

0.0720
0.074L12
0.07473
0.08978
0.07221
0.0659
0.1089
00,1252

0.08536



TABLE VI (cont'd)

MATERIAL PROPERTIES

SPECIMEN  E1 Viz

B G1.
NUMBER (10% P.S.I.) (106 P.S.I.) (103 P.5.T1.)

Manufacturer's Values

5.7 1.4

Va1



TABLE VII

GEOMETRY OF .TUBES USED TN BIAXTAI STRENGTH TESTS

TUBE R t
DESTIGNATION {IN) (IN

6a 0 1.017 . 0400
6b 0 1.017 ' . 0406
6c O ' 1.017 L0407
.7a T 30° 1.018 _ .0397
7b + 30° 1.018 . 0408
7e + 30 1.018 . . 0405
8a T 45 1.021 | . 0406
8b + 45 1.021 . 0408
Be + 45 1.020 - .0397
9a + 60 1.021 | . 0401
9b + 60° 1.021 , 0410
9¢ + 60° 1.021 . 0404
10a 90° 1.021 - : L0410
10b 90° | 1.021 L0400

10¢ 90° 1.021 : L0404



TABLE VIII

BIAXTAL STRENGTH TEST DATA*

SPECIMEN ) MEASURED- BURST
NUMBER © PRESSURE (P.S.I.)
6a 0° : 131.0
6b 0° 135.0
6c 0° 108.0
Mean Value 124.7
7a F 30° 241.0
7b F 30° : 260.0
7¢ + 30° ‘ 240.0
Mean Value ' 247.0
“8a F 45° 557.5
8b + 45° 582.0
8c ¥ 45° 630.0
Mean Value ' 589.8
9a + 60° 675.0
9b + 60° 643.0
g¢ + 60° 665.0
Mean Value 661.0
10a 90° 250.0
10b 90° . 242.0
10e 90° 289.0

Mean Value 260.3

*4 Ply Cylinders (-6, +8, +8, -8)



TABLE IX

GEOMETRY OF LAMINATED TUBES FOR COMBINED LOADING TESTS

TUBE ' 8 1L ‘ R t
DESIGNATION 1 2 3 & % in. in. in.
1a 0° © 0% 0° o° 1.016 0.0399
1b o° ° 0° 0° o° 1.016 0.0404
ic 0° © 9° 0% o° 1.016. 0.0401
2a + 30° -30° 30° 30° -30° 9.5 1.019 0.0408
2b + 30° -30° 30° 30° -30° 1.020 0.0410

— o o o o o
2¢ + 30 -30° 30° 30° -30 1.019 - 0.0406
3a + 45° ~45°  45° 45° -45° 9.5 1.022 0.0409
3 ¥ 45° ~45%  45° 45° —45° 9.5 1.022 °  0.0410
3¢ F 45° -45% 459 45° —45° 9.5 1.022 0.0404
4a + 60° -60° 60° 60° -60° 9.5 1.022 0.0405
4b + 60° -60°  60° 60° -60° 1.022 0.0414
4e T 60° -60  60° 60° -60° 9.5 1.022 0.0410
5a 90° 90° 90° 90° 90° 1.022 0.0410
5b 90° 90° 90° 90° 90° 9.5 1.022 0.0417
5¢ 90° 90° 90% 90° " 90° 1.021 0.0410

*1st lamina is innermost lamina



TABLE X

FATILURE PRESSURES UNDER COMEINED LOADING

OF CONSTANT TORQUE AND INCREASING INTERNAL PRESSURE®

_ FATLURE
TUBE _ PRESSURE
DESIGNATION (p.s.i.)

la 0° 112

15 0° 145

- %)

2b ¥ 30 245

2¢ ¥ 30° 276

3a ¥ 45° 623

36 F 45° 597

4a F 60° 675

_ 4e ¥ 60° \ 597

5a 90° 276

5p 90° © 256

5¢ 90° 273

*4 ply cylinders (-, +, +, =)
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FIG. 7 ONSET OF FAILURE

FIG. 6 LONGITUDINAL TENSILE

STRENGTH TEST SET-UP
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FIG.. 2 STRESS — STRAIN CURVES FOR SCOTCHPLY (1002)
| LOADED PARALLEL TO FIBER DIRECTION



s

1l
WA
—

P -

e i Sl e e e i e i s

FIG. I AFTER FAILURE



FIG. 12 TRANSVERSE TENSILE FAILURE

FIG. I3 TRANSVERSE COMPRESSIVE FAILURE
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FIG. 23 SPECIMEN FAILURE IN F2 TESTING
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APPENBIX A

DETERMINATION OF STRESSES IN FIBRE-REINFQRCED CYLINDERS

UNDER COMBINED LOADTHNG

A.l  Anisotropic Shell Theory

1. Equilibrium Equations

Let ﬁhe mid-surface of the circular cylindrical shell be
the reference surface with X, #, and z measured with respect to that
surface in-Ehe axial, circumferential, and radial directions respec-
tively (Fig. A.1). The components of displacement u, v, and w of
a point on the midfsurface are the displacements in the x, 6, and
z directions due to the externally applied loadings. The thickness,
_h, of the tube is assumed to be uniform. Differentiation is denoted
"by a comma.

For. a cylindrical element, the strains are given iﬁ the

following form:



ex = exo + ZKX

(A1)
€ = E@o + z[1 -~ z/R] K g
€xo = [1 + 52/28%] €xe + 2[1 - 2/2R] Ky
where

€x° = Uyx .
€e’ = (1/R) (v,g+ W)
e;x;: (U-,g-/R) T Vyx

. Kx = —Wyxx . hz)
Kg = ~(1/R?) (W,ee + W)

are the ﬂid-plane strains and curvatures.

Under axisymmetric loading differentiation with respect
to the @ coordinate is assumed to be zero. Substituting this
and equation (A2) into equation (Al) gives the strain-dis-

placement relations in the following form:

exzuyx-zwpx_x
_ 2]
ee“i{ 1 -2+ 2 (A3)
R R RZ '
A

The force and moment resultants are related to the

middle-plane strains and curvatures in the following manner



(Ref. 25): e

Ny | [A17 A1z Dyg/2R2 - Dyy/R O - D16/2I-J }.X"T

Ng A1z Apo Dog/2R% 0 ~Da2/R -Dog/2R| le,°

N | 0 0 A66+Dg6/2R2 Dig/R O D66/28| [€Exe “
My D11/R D12/R Dig/R D11 D1z D16 Kx

Me | |O 0 0 D12 Dpp D26 Ko

Mxe| |D16/R D26/R De6/R P16 D26 D66 | |Kxe]

h/?2 :
where (Aij, Di3,) =S—h/2Qij (1,22)dz &, = 1,2,6) (45

The equilibrium equations are obtained by considering
the forces and moments acting on an infinitesimal element of

- the ﬁid—plane of the shell {Fig.A.2). These are

- | Ny,x = O

N + 1 Myg,x = O (Ad)

R

XOy X

My,xx.~ Vg + p =0

R
where p is the internal pressure applied to the tube.

2. The Governing Differential Equation

The first part of equation (A6) gives, upon integration,
that
Ny = constant = Nj (A7)
by substituting the constitutive equations (AL) into the

second and third parts of equation (A6) and using equation



(A7) the following differential equation in w can be derived.

M, ooce + A2 Waxx + Mgw = p — A1ghes No + A12K16 | (4e)
Re R RD 2 TTRAD

where Ny = fDjj - 1 (9112 Agg - kA1 D16 D1 + LA11 D162)
RPD |

Mo =2 (Aéé A2 D11 - 2A1p Dig A16) .
D

o
o
n

App - A1p° Rg6
D

Azp = App + Dpo
B2

Age = A66 + 3D66
CR2

D16
R2

b
[y
o

i

D = A11 A66 - A167

3. Solution of the Governing Differential Equatlon

The differential equation (A8) can be solved by rewriting

it in the form:

W A2 Woxx + A3 w=1 [p- A2 366 No + A1z A1g T )(A9)
R*M RPAL A\ RD 2 TRD

The solution to this equation is composed of a particular



solution, wg, and the solution to the homogeneous equation;

whe For this case, the particular solution is

wo = R fp - A2 .‘,E66 No + A12 A16 T) (A410)"
}G RD 2 T'R4D

and the solution of the homogeneous differential equation is

of the form
‘w, = ke™ (A11)

where k¥ and m are either real or complex constants. Sub-
stituting equation (All) into the homogeneous differential

equation and solving for m gives

m? = -b +\[b2-4d (A12)

- 2

where b = kz and d = X3

R2 A M

There are three possible cases that could be solved for,

2

namely, hd:-bz, L4 = b~, and Lpd'l‘:bz, however, only the first

case will be solved in detail in this paper.

When Ld=1b?, than equation (A12) becomes

m? = 4(-b + iyhd-b?) (A13)

rigd

1l
14

where i =\/ -1



Therefore, m can be written as

m = + &+ iﬁ | (Alk)
and m2 =&l -@° + iR™p | (Al5)
so that © =2 .82 = _p/2 - (A16)

and & = 208 = 2hab? (AL7)
. Solving equation 0416) and (Al7) gives that

(T - b)#E (A18)
and B =3 (WNT + 1)} (A19)

ol

ot =

Substituting these into equation (AlL) and then into equation
(A11) gives the'following expression for the solution of the

homogeneous differential equation
wh =€%%X (A cos8x + B sin8x) +g~x (Cz cosfx + D éinﬁx) (A20)

and W= wp + Wo - ' (A21)

The constants A, B, C, and D can be solved for through the

use of the boundary conditions.

Once the expression for w is known, its derivations can
be calculated quite easily. Inlorder to determine the stresses
and straing in the tube, the on1y other quantities neede& are
u,x and v x , which can be calculated from the following

relations

u,x = A6 |No - A16 T - Arp w + W,xx(Dll ~ RA16D16 (A22)

Y g6 2R R R RAG6



(423 )

V,x = A1 - _16 No + Aq»2 Elé W W oxx 2D16D~316D11‘366+2K162 D16
2 TPRD D RD RDAgb

The stresses in each ply are calculated from Hooke's law

for plane stress,

o - = M -~ }
ox 1K Q1 Tiz Qigl ¥ ex1 k
oo | ~|Q2 Tz Q26| €  (A2)
Uxe 616. 626 666 :BXGL

where aij ig the lamina stiffness matrix referred to an arbi-

trary = set of axes.

A2 Conclusions

In this paper s presented a method derived from the
éxtengioﬁ of Flugge's shell theory to anisotropic materials
by which the stress variations along the length as well as
across the thickness of a symmetricall& laminated orthotropic
cylinder can be calculated. A computer program has been
written to perform this task and is listed in the following
section. The results for a foﬁr ply circumferentially |
wrapped cylinder loaded under a combination of axial com~
pression and internal pressure are élso listed and plotted
there. As can be readily seen from these results, the effects
of the ena contraints are confined to relatively small regions

near the ends of the cylinder.

This analysis allows the researcher to more optimally
design composite cylinders so that the test section is suf-

ficiently far from the ends of"the cylinder where the large



bending stresses are induced and the thickness of the tube

can be chosen so that the stress variation across it remains

very small, Also, other types of end attachments (boundary

conditions) could be designed that might relieve these large

bending stresses caused by rigidly clamping the ends of the

cylinder,

A3  Computer Program to Calculate Shell Stresses

Purpose:

Method:

Input:

Output:

To calculate Uy, O0g, Txe as functions of x, the
position along the length of the tube, and z, the
position across the thickness, for circumferentially
wrapped tubes,

Calculate the mid-plane strains and curvatures and
then determine the stresses from the Hookefs law
relations.

The data card contains the loading applied to the .

tube.
[ Mo ] P T ]
0 ) 10 - 20 30

Position along the length of the tube, x (tube end
at X;O); position across the thickness of the tube,
z (mid-plane reference surface at z=0); applied
loadings, Ng, Py 1 ; stressesSx, T e, Txg; radia’l.

displacement and derivatives, W, W,x 5 W,xxe



" PAGE 1
/7 JOB 0001

LOG DRIVE CART SPEC CBRY AVAIL PHY DRIVE
0000 0001 0001 0000

VZ M1 ACTUAL BK CONFIG 8K

// FOR

*L1ST SOURCE PROGRAM

#ONE WORD INTEGERS
*IOCS(1132PRINTER¢PLOTTER1CARD3

THIS PROGRAM CALCULATES AS A FUNCTION OF XI(THE POSITION ALONG THE
LENGTH OF THE TUBE) AND AS A FUNCTION OF ZITHE POSITION ACROSS THE
THICKNESS COF THE TUBE) THE AXIAL STRESSs THE RADIAL STRESS» AND
THE SHEARING STRESS RESULTING FROM ANY GIVEN COMBINATIOB OF AXIAL

"FORCEs INTERNAL PRESSUREs AND TORQUE : i

NOoONOON

REAL NOsHsL1oL2sL3 s NeX( &)

DIMENSION Q{3¢3)sE(2A)sSTRI3)sCOF(4os) o'WOM{G)sNLI{4)sN2{4) ,
Pl=3,14159 . . W ! :
Rz=1,020 ‘ . o : ‘ C

T T H=0.040 - - — - ‘;‘;i- fg]‘l{éLILﬂTE

Z2=2H/7240 _ - R ! T

ann

THE NEXT FIVE CARDS GIVE THE.ELASTIC CONSTANTS OF THE COMPOSITE

Ell=D44765E7
E22=0¢12Y2E7 B _ ’

Gl2=0.4230E6 ‘_ .. o H'nllli’:t:'ﬂl.-"tl_
V12=063363 ’ ‘
V21=0.0855 |
VV=100=V1iZ2#V21

© THE Q=MATRIX IS THE STIFFNESS MATRIX

2
]

Nno N

Qlleli=E22/VV
Qi{2:21=E11/VvV o .

Q{ls2)=El1av21/sVV ' . . g
Q(2s1)=Q(1s2} | ‘ }
Q{3:+3}=G12 ‘ ) ‘ ‘ ‘ thguLﬁTt
Qlls3)}=0.0 : '

Qi2:3)=0,0 : J

Ql{3s1)=2001s3)
Qi312)2Q12+3)
Al1=0Q{1s1)#H '
A12=01{1s2)#H
Al6=Q1{1s3)%H » ,
A22=0Q(242)#H — ?
A26=Q(2s3)%H :
AGE=Q (393 ) %#H | | o
Dl1= Qflcl)*H**BcO/lzeO |
D12=Q(1s2 ) 2#H#%E340/1260
D22=Ql2e2)#HE#IL,0/1260 L. L ¢ L_ _
—— ™ v L til ?q TL
D16=0(1:3 ) #Ha#3,0/1260 :
D26=Q(2s3 ) #HE#3,,0/12,0 '
D66=Q {3931 8HA#3,0/12:0 . : oy

ORIGINAL PAGE IS
OF POOR QUALITY! -

C

EOH)OW /

o S LLUWLATE

PROPERTIES

Q',;a- AMATE %

A.aj MATR

Dij MATRIX

SHELL T TRaniUs T AADS

THICKAMESS

- EOLROGR FRAMEZ
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- 2
THE NEXT 11 CARDS GIVE THE CONSTANTS USED IN THE DIFFes EQNa

F22=A22+4D22/R%#%240

F66= A66+300*066/R**290

F16=D16/R##2.0 S

D2AL1*F66~Fl6#42.0

Ll= Dl1-(011**2.0*F66-430*011*016*F16+4;O*016**2aO*AllIX(D*R**ZoO}
L2=2,0%#(F66*A12#D11=2.,0%A12%#FL6%D16)/D

L3=F22=A128#2,05FE6/D"

- Cl=50RTIL3/IR#¥2,0%L1))

500

C2=L2/{R#%2,0%L1)

DZ2=4.0%C1##240

B2=C2#%#2,0

WRITE(3+45001824+D2

FORMATULIH 9'B2= "3E104435X9'402= '4E10Qsb4s///)
ALF=SGRT(2.,0#C1=C2) /240
BET=SQRT(2.0%C14C2} /2.0

LN=5,0

CO=COS{BET*LN)

ST=SIN(BET*LN)
EX=EXP(ALF®LN)
EXM= EXP(—ALF*LN!

THE COF=MATRIX IS FOUND BY APPLYING THE 8.Ces'S TO THE SOLUTION OF
THE DIFFs EQNe FOR We IT 15 THE MATRIX USED TO DETERMINE THE
CONSTANTS AsBsCorD,

THESE ARE FOR THE RIGIDLY CLAMPED CASE

600

700

100

COF(1s1)2140
COF(1+2)=2040

COFt1s3)=140

COF{1+41=2040

COF{241}=ALF ,

COF (202 ) oBET - ol
COF(2+3) m=ALF

COF(2+4)=BET

COF(3,1)=CO*EX

COF{342) =St #EX
COF{313)=CO*EXM

COF (344 ) =51 #EXM

COF (441 )= (ALF#CO=BET#SI ) #EX
COFl4492)=(BETH*CO+ALF#S]) #EX
COF{43s3)=(=ALF*#CO=BET#ST ) #EXM
COF {494 )= (BET*CO=ALF#ST) #EXM
WRITE (356001 COF .
FORMAT{4ELGodo /)

NOW FIND THE INVERSE OF COF TO FIND AsBsCsD

CALL MINVICOF 94 4DET N1 SN2}

WRITE [39700)COF

FORMAT (4E14atis/) = AP
READ(25100) NOsPsT | ORIGINAL PAGE B3
FORMAT (3F1002) :

CALL FGRID{0s0060+s0e0000104+25)

» POOR.
CALL SCALF(65090+1030:0,=2040.) OF '
CALL FGRID{130003=50005160+100}



PAGE 3

CALL FCHAR!205549=1209002050+202040)
WRITE{LT310}
10 FORMATI{'X (INe} '}
CALL FCHAR(-O;15910009002090a20’P1/200]
© WRITE(7s11)
11 FORMAT(' STRESS X (KeSslsl'}
AX=0.50
DO 12 I=135
CALL FCHAR{AX=0005/6403=2¢50+0410+0¢100340%P[/2.0)
WRITE(7913)AX
sorier 13 FORMAT(F3s1)
SECTION AX=AX+0,250
_ 12 CONTINUE
AY==5040
DO 14 I=1s11
CALL FCHAR(“O.T/GaODAY“Oo5090&1090310?000)
WRITE(T7:15}AY
15 FORMAT(F6.11}
AY=AY+10,0
14 CONTINUE
CALL FCHAR(14259=4550350420504205040)
WRITE(7581)
81 FORMATI'STRESS X AS A FUNCTION OF X FOR')
CALL FCHAR(14259=4840+0420+04204040)
WRITE(T7:82)
82 FORMAT{'RIGIDLY CLAMPED ENDS')
CALL FCHAR(14003=51209002090+205000)
. WRITE(7+83IN0sPsT , : ' ‘
| T B3 FORMAT('NO='sF8e29' LB;/INei'!’ =1 3F Tals? PoSoIoo'i' T='¢F4.l!' P T T e e
y INe=LBo ') '

W0=R**200ﬂp“150*‘AIZ*F&b*NO)/(R*D)+(A12*F16*T)/(2 O*PI*&*R*D))/L3/L3
WOML 1) ==WQ '
WOM{2)=0.0 , ‘ K
WOM{3) ==l : ’ ) P .- y
CWOM(4 300~ e e s e Eo S e e
DO 3 Ii=ls4. . | s
K{111=0.0 : o ' '
DO 3 JJ=lrb 5
KfII)~K(IIl+COFf1I9JJ)*WOM‘JJ) =
3 CONTINUE 1 . ‘ o E i
WRITE(3,800)K ~ =~~~ 7 xR REECEE L
BOO FORMAT{4El4e4) .
DO 21 L=1#3
WRITE{3+200) ;
200 FORMATILIHY »3X e "X ' s5X o 'Z ' oS5X s ' NO' 07X s 'P1 X' T'e5X s 'STRESS X'iSXp'ia's
TTRESS Y's5Xe!STRESS XY‘sSXo'W‘GlZK#’WK‘!IIXO WAX'e/)
X=0.0
BO 1 N=1,451
CSeCOSIRET#X}
SN=SIN{(BET®X)
WKL) HCS+K{2IRSNI#EXP{ALF#X )+ (K{3 ) #CS+K (4 ) #SN)HEXP{=ALF#X)}+wW0 )
. WXR((K LY HALF+K {2 I #BETI#CS+IK(Z2)#ALF=K (1 I #BETI#SNI#EXP{ALF#X )+ { (Kl {K(
T B4 )NBET-K (3 #ALF I HCS= (K3 ) #RETHR (G ) #ALF ) #SNI#EXP (=ALF#X) T
o WEAX= (KAL) RALF##2 04240t K {2 ) #ALF#BET=K{1)#BET#%2, 0?*CS+(K(2)*ALF*F%*
12,02 ORKILYHALFHBET=K {2 ) #BETH#2 DY #SN)HEXPLALF®*X )+ (K (3 )#ALF&#2,12,0
223 08K (G I HALFHBET=K{ 31 ¥BET##2,0)#(5 +(K(4)*ALF**200+2uO*K{3’*ALF*F*B
FET=K ({4} HBETHH#2 40 HENIHEXP {~ALF#X) 8

X*Féé*(NO+Dll*WXK/R AlZ2%#W/R= Flé*T/lFéé*EoO*PI*R)-290*F16%016*wKXHXI
%@AME ORIGINAL PAGETS |
OF POOR QUALITY

il
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LIR#F66) ) /D " f g.
VXs(T#AL11/(240% PI*R)"FIG*NO+WXK*{2eO*Dlé*D-Fléﬁbll*F66+2-0*016*F46 "y
1#%2,0 )/ {R¥F66) +WAL2¥F 16 /R) /D L i‘i 1 |
EfL)=UX=2%WXX T 142 e _ o
E(2)=(100=Z/R+{Z/R)¥#200) %W /R . t.l"?LC'LiLHT!: THE STEAMS LS _C‘&i) Ex o
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The tube considered in this example was a circumferentially
wrapped tube loaded to failure in simple axial compression.
The expression used to calculate the ultimate failure stress

was simply

Q-‘Lllt- = P'U.lto

A

and this gave a value for @y of -13,158 psi. The computer

program was then used to calculate the stress distribution

in the tube using the ultimate.load as input and it‘gave the
same results in the test section of the tube. It also showed
that the tube had been reinforced sufficiently at the ends to
overcome-the large stresses that were induced ?here; As can
be seen from the printout, the stress distribution across the

thickness was also fairly uniform.
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In this example,'the tube was also wrapped circumferentially
but it was under a more complex loading state. The tube was
loaded in axial compression and internal pressﬁre and the
values of the load read inté the computer program occurred at
faiiure. The induced bending stresses were quite significant
near the end of the tube that these rapidly converged to a

uniform stress state.
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APPENDIX B

THE EFFECTS OF TEMPERﬂTURE ON THE MATERIAL PROPERTIES

OF FIBREGLASS/EPOXY COMPOSITES

B.,1 INTRODUCTION

With the increased use in recent years of advanced com-
posites by the aerospace industry for thé design of primary
load carrying structures, ever increasing consideration has
been given to the effects that varying environmental con-
ditions may have upon the integrity of these materials. Some
of the most common of the advanced composites are those made
using glass fibres embedded in a polymer matrix; an'exémple
of which is Scotchply 1002. Although some references exist
on the effects of temperature on these materials it is de-
sirable to have specific data on the épecific material in
question. This study has been performed in order to evaluate
the effect of various temperatures on the elastic constants
and burst sfrength of circular cylindrical tubes made using
Scotchply 1002. The results-of this investigation are re-

ported in the following sections.

B.2 Test Procedure

All sixteen of the tubes used in this investigation were
tested under internal pressure and subsequently loaded to
failure. The various phases of the testing procedure are
shown in Figures Bl {o. B3. Each of the eleven strain gauged

tubes was subjected to two separate loading constraints; the



first being free expansion under internal pressure (ie., both
€x and &€y being non-zero) and the second being clamped ex-
pansion under internal pressure such that ex;:’o with, how-
ever, €y remaining non-zero. By using the data obtained
from the axial and circumferential strain gauges when the
tubes were loaded as stated above, it was possible to solve
the constitutive equations for the elastic constants of the
material (ie., Byy, Ep2, Y1z and ¥21). Section 3 describes
in detail the method of solution used. Figures B.4 through
B.l10 show the pressure vs, strain curves from which the data

was obtained to perform the calculations.

In-situ test temperatures were varied over the range of
—~80°F to 250°F so that the effect of test temperature on the
elastic constants of the material could be studied. Once
this data was obtained the specimens were then loaded to
failure under internal pressure in order to evaluate the
effect of temperature on the transverse burst stfength of

the material.

For these tests, temperatures in excess of ambient room
temperature were obtained using a Blue "M" Oven, whereas
temperatures below ambient were achieved using a Tenny Junior
environmental chamber. In order to ensure that consistent
in-situ test temperatures were obtaiﬁed, each of the specimens
was equiped with thermocouples which were monitored at all
times during each test. The temperature of each tube was
allowed to stabilize a£ the desired value before testing be-

gan, This nominally required 0.75 hours for each test. By



using the Blue "M" Oven and the Tenny Junior Chamber it was
possible to achieve a temperature stability of + 1°F during

eceach test run.

B.3 Basic Eaquations

For any anisotropic material it is possible to write the

constitutive or Hooke's Law relations in the following form:

ax | ¥ Q11 Q12 Tug * fex ]

oy = 812 Q2 Qa4 €y | (B1)
T 3 0 &) €

2 I TR I

where the superscript, k, denotes the kPN 1amina of the ma-
terial. Since all of the tubes used in this investigation o
were 3 ply, 90° laminates the superscript may, in this case,

"be omitted.

The components of the stiffness matrix, [@] are given
by the relations:
Q11 = Qiicos ke + 2(Qqp + 2Qgg) sinfe cos %6 + Qupsin “e
522 = Q11sin *e + 2(Q12 + 2Q66) sin_z-o- cos 2o + Qppcos L o

612 = (Qq1 + Qpp = bQééleinz{FCOSZ{>+ Q66(sin44;+-coshe9

(52)
Q66 = (Qqq + Qap — 2Q12 - 2Q66) sin-e-cose + Q66(s_in49+ coske) -
016 = (Q17 - Q12 - 2Q66) sin-e- cos3e+ (Q12 ~ Q22 + 2Q6¢)sin>e cos e

Qg = (@11 - Q12 ~ 2Q66) sinte-cos@+ {(Q12 - Q22 + 2Q46)sinecos3 o

where the Qi3 (1,3 = 1;2,6) are the components of the stiff-

ness matrix for the lamina coordinate system, and may be ex-



pressed as:

It

Q11 = E11/(1-Vi12V21)

Qop = Epp/(1-Vi12V21)

Qiz =V21 BE13/(1-Vi2V21) = Vi Bz2/(1 =Vi2V21) (B3)
Q6 = G12
Q16 = Q26 =0

Thus, with a wrap angle of 90°% as for the tubes being

considered here, equations (B2) reduce to:

Q11 = Q22 = Ezp/(1 - Vi2V21)

Q22 = Q1 = El]/(i - V12 v21)

Q12 = Q12 = Vo1 E11/(1 - V2 ¥21) (BL)
‘ Q66 = Q6 = G12 |

Q16 =—326 =0

The constitutive equation (Bl) can therefore be expressed

in matrix form as:

x| Qe Qiz O —éx i
¢y | = Q2 Qa1 O €y (85)
FXI’: 0 0 Q66 E'xy; '

Equation (B5) can now be expanded taking into consider-

ation the two separate loading cases:

Tx1 = Ee2 €x1 +V12 E2zeyn (B6.a)
8 8
Ty1 =Vi2 22 €x1 + E11 €51 (86.1)

8 B



Txy1 = G12 Exyy . (Bb.c)

and, Ox2 =V12 E22 €y2 (86.4)
B
Gy, = E11 €y2  (86ue)
5
Txys = G12 €xyn (B6.1)

where the subscripts 1 and 2 denote the free expansion and

clamped loading conditions,respectively, and § = 1 -Wyp Vo7,

By settingTyy = Typ, equation (B6) can be reduced to

the set:
Ox1 = Epz €xq +Vi2 Eoz €y (87.a)
B 8
- Tyi =Vip Fpp€x1 + En €y - (B7.b)
g B
Tyz =0y1 = B33 €y2 . (B7.c)
which may be readily solved for E11s E22, V15 and Vo1 as
follows, |
Bi.Gyz (88)
B €y
Bz o 1 f0%1 ~Cy1€y1 (€42 - eyl)) (B9)
6 exl €x1 E'y2

Ox1 €x1 €y2 - Ty1€y1(€y2 - €y1)



Vo1 = (€y2 - €y1) -~ o {B11)

€ x1

It should be noted that the condition that @y1 = Uy2 is
easily accomplished experimentally by ensuring that under
both of the loading conditions the tubes are loaded to the

same internal pressure.

The above calculations were performed for each tube and

the results are listed in TablelV. The gecmetric properties of each of the
tubes tested can be found in Table B.l.

- Bu.h  Discussion of Experimental Results

As can be seen from the graphs in Figures 8.1l to B.1§ the
testing temperature has little effect on the value of Ejq. -
The calculated values are weil within + 104 of the average
value of about 5.9 x 10%psi. It was expected that the range
of temperatures investigated would not affect the properties
of the brittle fibres as much as it would affect those of the'
ductile epoxy matrix. Therfore, since Eqq is primarily a

function of the fibre modulus it should not change very much.

The test temperature had a greater effect on the value
of Epp since it is primarily a function of the modulus of the
matrix. At high temperatures the matrix is very plastic and
strains easily so that Egp takes on a very low value. At
lower temperatures the matrix becomes brittle and strains
less than it would at higher temperatures. This increased
slope of the stress-—strain curve results in a higher value

for E22.



The same reasoning applies to the effect}of temperature
on the transverse burst sﬁrengthlof the material. Since it
strains easier at higher temperatures, fracture will occur
at a lower value of internal pressure and the opposite is

true for the lower temperatures.

B.5 Conclusions

The effects of testing temperature on the transverse
burst strength and the material properties of a fibreglass/
epoxy composite have been reported in this Appendix.It has
been shown that variations in the temperature over the range
being investigated have pronounced effects on the properties
of the matrix material but do not affect the fibres signifi-
cantly. Since it is the matrix material which is most af-

- fected b§ the temperature changes, the effects on other mech-
anical broperties such as shear strength and modulus which
are directly related to the matrix should be investigafed
fully‘in order to obtain a more complete understanding of
the changes taking place in the composite at different

temperatures.
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FIGURE B.}

INSTRUMENTATION AND A TUBE READY FCR TESTING
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FIGURE B.2

CLAMPING APPARATUS AND A FRACTURED TUBE
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APPENDIX C

THE FFFECTS OF LENGTH OF POST CURE ON THE MATERIAL

PROPERTIES OF FIBREGLASS/EPOXY COMPOSITES.

C.1 INTRODUCTION

Many fibreglass/epoxy components can be manufactured
from preimpregnated (prepreg) sheets of oriented fibre im-
pregnated with uﬁcured epoxy resin., Data sheets provided
by the manufacturer of the prepreg tapes usually give a
specified length of time as well as the temperature and
pressure at which the component must be cured to achieve
optimum properﬁies.‘ However, these specifications rarely
give the effects of a deviation from the normal cure time

on the properties of the composite.

Here, the results of a preliminary investigation on the
variation in certain mechanical properties which result from

variations in the length of post cure time will be reported.

C.z2 Test Procedure

A1l of the tubes were tested under interﬁal pressure.
Two tubes from each batch of three were equiped with an axial
and a circumferential strgin gauge. The elastic constants
(E11, E22, V12, and V21) of the material can be solved for
when the responses from these strain gauges to two different
loadings are substituted into the constitutive equations (see
f\PFnand{x B for details). The two types of loadings

are free expansion under -internal pressure (€x# 0 and €y 3#0)



‘and clamped expansion under internal pressure where the tube

is clamped in such a way that €x = O but €y # O,

The required pressure vs., strain curves were obtained
for each strain gauged specimen (Fig.C.l} toC.4) and then the
tubes were burst in order to find the effect of length of post
cure on the ultihate transverse burst strength of the material

(Fig.C.5).

A general view of the testing apparatus is given in

Figures B.| and B.2.

A1l of the tubes used in these tests were wrapped with a
fibre angle of 90°, ies, the fibres were aligned in the cir-

cumferential direction.

The equations used in the calculations are the same as

those derived in the pPeViOUSJAPPeﬂdﬁu

C.3 Conclusions

The various elastic constants and ultimate transverse
strength were calculated from the strain gauge responses for
the two different loadings. These results are shown in

Table V.  and are plotted in FiguresC.6 ¥ C.9.

As can be seen from the graphs, the length of post curing
time has little effect on the values of Eqj. The calculated
average values vary little from about 5.6 x 100 psi. This
was expected because Epq is essentially the value obtained by

multiplying the fibre modulus by the fibre volume fraction.



The effect of the matrix modulus on E1l is negligible. Also,
the lengths of post curing times considered in this investi-
gation shouldn't have had any degrading or harﬁful effects on
the fibres. For the 24 hour post cure case, there was quite

a variation in the values calculated for Ejj. This was de—
termined to be a Poisson's ratio effect. The Poisson's ratio,
W12, is directly proportional to thé difference in the strain
€y2 and €y1 {(a very small number) and is therefore very diffi-
cult to determine accurately. The difference in the two

values 1s approximately 6.2 which gives a + 33% inaccuracy in
the value of ¥1p. Tqq1 was directly proportional to V12

(E11 =WV12 Epp/wp1) and this is the reason for the great vari-
ation in Eiq at 24 hours postcure. The quantityf=2(1 - vlévgla
was a much more accurate number to determine and so the quanti-
ties Ell/B and E22/B were calculated so that the variation

- in the modulil would be reduced.

The difference in post curing time has a more prondunced
~effect on the value of Eps. As the length of post curing
time increases, Esp steadily decreases. This is also to be
expected because the length of post cure affects the matrix
more than the fibres and Epz is more dependent on the modulus

of the matrix.

Using the same reasoning as above, the ultimate trans-—
verse strength, T o,, increases a good deal as the length of

post cure increases.

From these two facts it is deduced that an increase in

—



the length of post cure causes the matrix to become = . more

ductile.

The amount of post cure will probably afféct othér me-
chanical pfopérties of the composite more than was noted in
this investigatibn. Some of these other properties would be
the interiaminar shear strength and shear modulus; the trans-
verse compressive strength and the fatigue strength. The
effects -on these properties will probably be quite pronounced
since they are quite dependent on the state‘of the matrix.
Other investigations should provide the effects of differences
in post cure temperature as well as time in order to determine
the optimum curing time for any given curing temperature to
obtain the optimum value fof any particﬁlar mechanical pro-
pérty of the comﬁosite. Curing conditions will probably
“vary with the property that is required and so, different
components can be fabricated to optimize the specific me-

chanical property that 1s required.



TABLE C.1

GEOMETRY OF TUBES USED IN POST CURE STUDY

TUBE R t
DESIGNAT ION (IN) (IN)
11c 90° 1.016 ‘ ©.0295
12¢ 90° 1.016 .0295
13¢ 90° 1.016 .0295
18a 90° - 1,016 .0292
18b  90° 1.016 .0297
18¢ 90° 1.016 .0300
202 90° 1.016 - .0299
206 90° 1,016 ©.0298
20c  90° 1.016 . .0292
212 90° © 1.016 .0294
21b " 90° ‘1.916‘ ©.0303

21c  90° “ 1.016 .0303
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APPENDIX D

OOMPUTER PPOGRAMMES FOR EVALUATING CUBIC TERMS AND FATLURE

PRESSURES FOR LAMINATED TUBES UNDER ]IITERNAL PRESSURE-~

- WITH AND WITHOUT TOROUE



EVALUATION OF CUBIC COEEFICIENTS

IMPLICIT REAL#8(A=Hy0=7)
COMMON /AAA/EL12E224W125VZ21+G12 :
. DIMENSION PRR(4) sENXY Q) oDTI (4} TRIB9310STG{G 3 ) 0A A s4) sBlG ) s o
1 IR(4YsICH4)
¢ READ(542) E11+E224V12sV21:G12
2 FORMAT (5D1644)

-~ READI(5+5) F1lsF23F11sF22sF12+F66
5 FORMAT(6D13.7)
i JREAD(5510) _(PRR{IV21=194)
10 FORMAT (4D2045)
READ(5510) (ENXY(I)sI=1s4)

READ(54+]10) (DTI¢1)sl=1s4}
READ{54+1) LR '
1 FORMAT(110)
LJH=e4040D0 -
RAD=1.02D0
NL=4
D0 40 J=1s4
DT=DTI(1])
CALL CMAT(TRsDT»THsNLILR) ' )
,SIGJI9JJ:TR(191}*pRR(I[[2¢DQfIR11)2)iPRR(1L+TRJI¢3'*ENXYLILMWmW
SIGIIv2)=TRI2+1)#PRRI11/24D0O+TR(232 ) #¥PRR{I1II+TRI2+3I*ENXY (1)
SIG(]931=TR(3011*PRR‘I)/2-DO+TR(3;2!*FRR(Il*TR{3:3)*ENXY(I]
40 CONT INUE
DO 50 I=1l44 .
AlT+»1)=3.D0O#SIGII+2)*S8TG(TI+1)RSIGLI2)
ﬁmA{IQZ?=3-DQ*SIG(IQIJ?SIGJJ!ZI?SIG(ItZLWF
All+31=3.D0%S1GI+2)#S5IG(T+231%51G{143)
Al{Tos4)=3.D0%¥SIGII 11 *¥SIC{1+3)%SIG(14+3)
Bil)=1eDO~{F1*SIG{Isl}+F2%#S1GL1+2)+2eD0#F12%¥SIGIIs1)#*SIG(]142)
1 +F1]*SIG(1011*516(191}+F22*SIG(1;23*516{1y21+F66*5[G(113)*SlG{I’3
1 1)
CALL LNFQND(As& 434 3BsIRIICHIER)
WRITE(&:50) .
60 FORMAT('1'sT10s'F112'4T30, 'F221"'sT7509'F266" " sTT70,'F1l66"'s/7)
WRITE(SsTO) {(B{I)sI=1s41}
TQ FORMAT(4D20e7)

w . STOP et St A e e e e et e e
END
s H4THHD+0T «1211D+07 +3363D+00 »08550+00 0 4230D+06
-,30755890—02+.23440]OD+OO+.Q39?71lD‘Ua+-2269570D“01-o6?87300D-03+e21h2418D-02
06742720400 «H6T4220+00 «60180p+00 260)180D+00
« O0000D+00 « 0T7650D+00 20TH6500+00 2 00000D+UQ
. e600000+02 | +60000D¥02 __ ______ -+450000+02 ____ 4450000+02
1

O .
OF fouali24c i
: {



"CAuxnﬂmnmuOFJﬂupumszE&ﬂﬂms

SPRINTOFF
IMPLICIT REAL*B(A=H0=Z)
"WCOMMONIAAA/Ell-EZ?;VlZ;VZl:GlZ et - -
DIMENSION TR{3s3)
READ{5s2) E11+E22+V129V21sGLl2
2 FORMAT (5D1644 )
) READ(545) FlsF23sF119F22+F125F566
5 FORMAT (6D1347)
e WR=2 L - e
" ENXY=+0765D0
DT=80.D0
F112=¢1667067D=03
F221=-41057499D=02
F266==4¢1372627D=02
e E L OOTABIFBAGODTOB e
TH=+040D0
DP=4005D0
RAD=1.02D0
ALIM=.8D0
NL=4
 WRITE(6410) DTsENXY. ) -
10 FORMAT{11% s T10s ' THETA=' s F10+25T30s 'NXY="'sF12ab2//}
CALL CMAT{TRsDTsTHeNLILR)
PRR=0eD0
40 CONT INUE

S1G1=TR{1+11*PRR/2«DO+TR(1s2)*¥PRR+TR(1>» 3)RENXY
SI1G2=TR(2+1)%PRR/24DO+TR(232)#PRR+TR (293 ¥ENXY,

S1G6=TR{341)#PRR/2eD0+TR (3421 #PRR+TR ({343} *ENXY

VALF=F1%SIG1+F2#SIG2+F11*#SIG1#51G1+F22%S1G2*#SIG24F66%S5I0O*S1Go+
1 2.D0%F12%S1GI#SIG2+3eDC#F112%S51G1#51G1*#5]02+3.D0#F221¥51G2%5]06G2%

es0

1 SIGI+34DO#F266#SIGOHXSIGEXSIG2=1«D0+3,DO*FLO6GHSIGLI#S]GORSE]I0E

PR=PRR
WRITE(6) 8501 PRsVALF+51G1sSIG2+SIG6

1='3015-5;2Xy'5166*'9D15 5
PRR=PRR+DP

FORMAT (' 'st'PR="'+F10e552Xs ' VALF=13D15¢592X2'SIG1=!1D15+54+2%X+'51G2

4

100

IF(PR «GEs ALIM) GO TO 100
GO TO 40

CONT TNUE | o oo e oom oo o s s e s s £ 85 i s i . 0

STOP
END

SUBROUTINE CMAT{TR+DT#TH»NLsLR)
IMPLICIT REAL*B{A=H0=2)
COMMON /AAAZE11sE229V12sV21+G12

DO 88 K=1 sNL

DIMENSION T(4)sDTA{4)sTALE) sTRI293)sTRI(343) Q03230 4H(5)s
1 QRIZ»394)9A(393)9AA(33] vLL(3!'Mf~"(3):OR(B'B)sW(:i}

SRiemy pace I
- OF POOR QUALITY,



88 T(K)=TH/NL
DTA(11==DT
JDTAL2)= DT

DTA(3)= DT
DTA{4)==DT
DO 21 K=1asNL

c CONVERSION OF DEGREES INTO RADIANS
21 TA(K)=DTA(KI*.40174532925D0
.- Cl=DCOS(TA{(LR))
S1=DSIN(TA(LR})
C2=C1%Cl
$2=51%5)

TR(1:11=C2
TR(152)=52 ,

L TRUL3I=2.D0%CI*SY
TR{Z2s11=52
TR(2y21=C2

TR{293)==2.D0%C1#%5]

TR(341)==C1l%51
TR{3+2)1=C1%5]
LIR(393)=C2=52, S e -

< THE INVERSE TRANSFORMAT ION MATRIX
TRI{1s11=C2
TRI(1s2)=52

TRI(143)==24,D0O*%C1#51
TRI(2+1)=52
TRI(292)=C2 .

TRI(Z2»3)=24D0%*C1%51
TRI(32,1)=C1%#51
TRI(3+2)==C1%S51

TRI{3+3)=C2=-52
C CALCULATE Q+QQsAsAA MATRICES

L NMV=1eD0=Vi2®yv21 - B
Q(lsl)= E117VV

Ql2+2) E22/VV
Qi1s2) (V21xF11)/VV

Ql2s1) Qi1+2)
@{34+3) Gl2 :
LQ41931=0.D0. . , . s

nuwinn

Q{3+11=0.D0
Ql24+431=0.00
Q({3s2)=0.D0

Q12=Q(1s1)=0(292)1=2.D0%GQ (343}
0232Q(1+2)~Ql2¢2)1+2.D0%*Q{3+3)
Q13=2.D0*(Q(142)+2.,D0%Q(3,3))

- 014=QU1s11+Q(292)=44D0%Q(353)
Q22=01151140Q(2+21=2.D0%Q(1s2)=2eD0%Q(3,3)
C CONVERSION OF THICKNESS INTO H WITH MEDIAN SURFACE AS

REFERENCE

. H{1)==TH/24D0
DO 777 K=1+NL
LTTT ORGK$D) = HOKD#TUKY
DO 9 K= 1sNL
Cl=DCOS(TAIK))
S1=DSIN(TA(K])])

C2 = Cl¥x2

$2 = Slwx2
L Ca = C2¥x2 b

S4 = S2%%2

QQ1s19K)

Q0(2224K)

QUIls1 )% 4+Ql3%52%C2+Q(2+2)%5S4
QU1e] )#S4+QLI*S2#C2+0( 2421404

fn n

AL?
Mwwwwwwmmm“mmwﬁﬁx&tgﬁﬁ‘

N

et S




QGQl192sK) Qla#S52%C2+Q( 121 #(54+C4)

‘QQI2s34K)
9 QQI3424K)
v NG 10 J=1.+3 :
U 1o I X6 R 0 RN S
Alls+JI=04D0
DO 10 K=1sNL
L AT s )1=00(T 3 JJsKIHAH(K+1)~H{K)} + AT 4.t}
10 AA{TsJ) = A(lsJ)

C SUBRQUTINE MINV ENTER AA AND REPLACE IT WITH THE INVERSE MATRIX
W UMM LL ARE WORK VECTORS FOR SUBROUTINE MINV._ _(MATRIX INVERSION}.
CALL MINVRD(AA939390ET91ER9LL M) '

DO 12 1=1+3
PO 12 J=143

(Ql2¥S2+Q23 % C2 1 #G1#C1]
QR12s39K}

QQL{2, vi) = GQ{1r»24K)

QO3 939K) = Q22%S22C2+Q{393)®(S4+ChY . — . . .
QQ(1e3+K) = (QLI2¥(C2+Q23%52 ) #51#C1

TAQ{319K)Y = GQ(Llr34K)

12 QR(I+J)=0Q(1sJsLR)
CALL MAMPIDITRS3+34QRs33 343332 sWs3)
o €cALL. WAMPID(TR33’39AA03s393s3o3 W3

RETURN ’ -
END '

$DATA m

SDATA N
s 47650+07 +1211D+07 «3363D+00 +0855D+00 +4230D+06

.=e30755890=02+02344010D+00+49397711D=04++2269570D=01=463873000=03+21424180=02

STAT]ISTICS = 136 CARDS READs— 150 LINES PRINTED





